Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Cell Biosci ; 14(1): 60, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734624

RESUMO

BACKGROUND: Transcriptional coactivator with PDZ-biding motif (TAZ) is widely expressed in most tissues and interacts with several transcription factors to regulate cell proliferation, differentiation, and death, thereby influencing organ development and size control. However, very little is known about the function of TAZ in the immune system and its association with inflammatory skin diseases, so we investigated the role of TAZ in the pathogenesis of psoriasis. RESULTS: Interestingly, TAZ was expressed in mast cells associated, particularly in lysosomes, and co-localized with histamine-releasing factor (HRF). TAZ deficiency promoted mast cell maturation and increased HRF expression and secretion by mast cells. The upregulation of HRF in TAZ deficiency was not due to increased transcription but to protein stabilization, and TAZ restoration into TAZ-deficient cells reduced HRF protein. Interestingly, imiquimod (IMQ)-induced psoriasis, in which HRF serves as a major pro-inflammatory factor, was more severe in TAZ KO mice than in WT control. HRF expression and secretion were increased by IMQ treatment and were more pronounced in TAZ KO mice treated with IMQ. CONCLUSIONS: Thus, as HRF expression was stabilized in TAZ KO mice, psoriatic pathogenesis progressed more rapidly, indicating that TAZ plays an important role in preventing psoriasis by regulating HRF protein stability.

2.
Int J Biol Sci ; 20(7): 2592-2606, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725855

RESUMO

Transcriptional coactivator with a PDZ-binding motif (TAZ) plays a key role in normal tissue homeostasis and tumorigenesis through interaction with several transcription factors. In particular, TAZ deficiency causes abnormal alveolarization and emphysema, and persistent TAZ overexpression contributes to lung cancer and pulmonary fibrosis, suggesting the possibility of a complex mechanism of TAZ function. Recent studies suggest that nuclear factor erythroid 2-related factor 2 (NRF2), an antioxidant defense system, induces TAZ expression during tumorigenesis and that TAZ also activates the NRF2-mediated antioxidant pathway. We thus thought to elucidate the cross-regulation of TAZ and NRF2 and the underlying molecular mechanisms and functions. TAZ directly interacted with NRF2 through the N-terminal domain and suppressed the transcriptional activity of NRF2 by preventing NRF2 from binding to DNA. In addition, the return of NRF2 to basal levels after signaling was inhibited in TAZ deficiency, resulting in sustained nuclear NRF2 levels and aberrantly increased expression of NRF2 targets. TAZ deficiency failed to modulate optimal NRF2 signaling and concomitantly impaired lysosomal acidification and lysosomal enzyme function, accumulating the abnormal autophagy vesicles and reactive oxygen species and causing protein oxidation and cellular damage in the lungs. TAZ restoration to TAZ deficiency normalized dysregulated NRF2 signaling and aberrant lysosomal function and triggered the normal autophagy-lysosomal pathway. Therefore, TAZ is indispensable for the optimal regulation of NRF2-mediated autophagy-lysosomal pathways and for preventing pulmonary damage caused by oxidative stress and oxidized proteins.


Assuntos
Autofagia , Lisossomos , Fator 2 Relacionado a NF-E2 , Fator 2 Relacionado a NF-E2/metabolismo , Autofagia/fisiologia , Lisossomos/metabolismo , Animais , Camundongos , Humanos , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal
3.
Biomed Pharmacother ; 175: 116674, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703509

RESUMO

Numerous cases of lung injury caused by viral infection were reported during the coronavirus disease-19 pandemic. While there have been significant efforts to develop drugs that block viral infection and spread, the development of drugs to reduce or reverse lung injury has been a lower priority. This study aimed to identify compounds from a library of compounds that prevent viral infection that could reduce and prevent lung epithelial cell damage. We investigated the cytotoxicity of the compounds, their activity in inhibiting viral spike protein binding to cells, and their activity in reducing IL-8 production in lung epithelial cells damaged by amodiaquine (AQ). We identified N-(4-(4-methoxyphenoxy)-3-methylphenyl)-N-methylacetamide (MPoMA) as a non-cytotoxic inhibitor against viral infection and AQ-induced cell damage. MPoMA inhibited the expression of IL-8, IL-6, IL-1ß, and fibronectin induced by AQ and protected against AQ-induced morphological changes. However, MPoMA did not affect basal IL-8 expression in lung epithelial cells in the absence of AQ. Further mechanistic analysis confirmed that MPoMA selectively promoted the proteasomal degradation of inflammatory mediator p65, thereby reducing intracellular p65 expression and p65-mediated inflammatory responses. MPoMA exerted potent anti-inflammatory and protective functions in epithelial cells against LPS-induced acute lung injury in vivo. These findings suggest that MPoMA may have beneficial effects in suppressing viral infection and preventing lung epithelial cell damage through the degradation of p65 and inhibition of the production of inflammatory cytokines.

4.
J Cachexia Sarcopenia Muscle ; 14(6): 2733-2746, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923703

RESUMO

BACKGROUND: Exercise stimulates the activation of muscle satellite cells, which facilitate the maintenance of stem cells and their myogenic conversion during muscle regeneration. However, the underlying mechanism is not yet fully understood. This study shows that the transcriptional co-activator with PDZ-binding motif (TAZ) stimulates muscle regeneration via satellite cell activation. METHODS: Tazf/f mice were crossed with the paired box gene 7 (Pax7)creERT2 mice to generate muscle satellite cell-specific TAZ knockout (sKO) mice. Mice were trained in an endurance exercise programme for 4 weeks. Regenerated muscles were harvested and analysed by haematoxylin and eosin staining. Muscle tissues were also analysed by immunofluorescence staining, immunoblot analysis and quantitative reverse transcription PCR (qRT-PCR). For the in vitro study, muscle satellite cells from wild-type and sKO mice were isolated and analysed. Mitochondrial DNA was quantified by qRT-PCR using primers that amplify the cyclooxygenase-2 region of mitochondrial DNA. Quiescent and activated satellite cells were stained with MitoTracker Red CMXRos to analyse mitochondria. To study the p38 mitogen-activated protein kinase (MAPK)-TAZ signalling axis, p38 MAPK was activated by introducing the MAPK kinase 6 plasmid into satellite cells and also inhibited by treatment with the p38 MAPK inhibitor, SB203580. RESULTS: TAZ interacts with Pax7 to induce Myf5 expression and stimulates mammalian target of rapamycin signalling for satellite cell activation. In sKO mice, TAZ depletion reduces muscle satellite cell number by 38% (0.29 ± 0.073 vs. 0.18 ± 0.034, P = 0.0082) and muscle regeneration. After muscle injury, TAZ levels (2.59-fold, P < 0.0001) increase in committed cells compared to self-renewing cells during asymmetric satellite cell division. Mechanistically, the polarity protein Pard3 induces TAZ (2.01-fold, P = 0.008) through p38 MAPK, demonstrating that the p38 MAPK-TAZ axis is important for muscle regeneration. Physiologically, endurance exercise training induces muscle satellite cell activation and increases muscle fibre diameter (1.33-fold, 43.21 ± 23.59 vs. 57.68 ± 23.26 µm, P = 0.0004) with increased TAZ levels (1.76-fold, P = 0.017). However, sKO mice had a 39% reduction in muscle satellite cell number (0.20 ± 0.03 vs. 0.12 ± 0.02, P = 0.0013) and 24% reduction in muscle fibre diameter compared to wild-type mice (61.07 ± 23.33 vs. 46.60 ± 24.29 µm, P = 0.0006). CONCLUSIONS: Our results demonstrate a novel mechanism of TAZ-induced satellite cell activation after muscle injury and exercise, suggesting that activation of TAZ in satellite cells may ameliorate the muscle ageing phenotype and may be an important target protein for the drug development in sarcopenia.


Assuntos
Células Satélites de Músculo Esquelético , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Camundongos , DNA Mitocondrial/metabolismo , Mamíferos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Proteína Quinase 14 Ativada por Mitógeno
5.
Theranostics ; 13(12): 4182-4196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554269

RESUMO

Background: Endothelial dysfunction is a systemic disorder and is involved in the pathogenesis of several human diseases. Hemodynamic shear stress plays an important role in vascular homeostasis including nitric oxide (NO) production. Impairment of NO production in endothelial cells stimulates the capillarization of liver sinusoidal endothelial cells, followed by hepatic stellate cell activation, inducing liver fibrosis. However, the detailed mechanism underlying NO production is not well understood. In hepatocytes, transcriptional co-activator with PDZ-binding motif (TAZ) has been reported to be involved in liver fibrosis. However, the role of endothelial TAZ in liver fibrosis has not been investigated. In this study, we uncovered the role TAZ in endothelial cell NO production, and its subsequent effects on liver fibrosis. Methods: TAZ-floxed mice were crossed with Tie2-cre transgenic mice, to generate endothelium-specific TAZ-knockout (eKO) mice. To induce liver damage, a 3,5-diethoxycarboncyl-1,4-dihydrocollidine, methionine-choline-deficient diet, or partial hepatectomy was applied. Liver fibrosis and endothelial dysfunction were analyzed in wild-type and eKO mice after liver damage. In addition, liver sinusoidal endothelial cell (LSEC) was used for in vitro assays of protein and mRNA levels. To study transcriptional regulation, chromatin immunoprecipitation and luciferase reporter assays were performed. Results: In liver of eKO mice, LSEC capillarization was observed, evidenced by loss of fenestrae and decreased LSEC-specific marker gene expression. LSEC capillarization of eKO mouse is caused by downregulation of endothelial nitric oxide synthase expression and subsequent decrease in NO concentration, which is transcriptionally regulated by TAZ-KLF2 binding to Nos3 promoter. Diminished NO concentration by TAZ knockout in endothelium accelerates liver fibrosis induced by liver damages. Conclusions: Endothelial TAZ inhibits damage-induced liver fibrosis via NO production. This highlights an unappreciated role of TAZ in vascular health and liver diseases.


Assuntos
Hepatopatias , Óxido Nítrico , Camundongos , Humanos , Animais , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , Cirrose Hepática/metabolismo , Hepatopatias/patologia , Fígado/metabolismo , Endotélio/metabolismo
6.
Front Pharmacol ; 14: 1203033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469871

RESUMO

Background: Pulmonary fibrosis (PF) is a progressive lung disease characterized by fibroblast accumulation and collagen deposition, resulting in lung scarring and impaired gas exchange. Current treatments for idiopathic pulmonary fibrosis (IPF) have limited efficacy and significant side effects. Heat shock protein 27 (HSP27) has emerged as a potential therapeutic target for PF due to its involvement in fibrotic processes. However, effective HSP27 inhibitors for PF treatment are still lacking. Methods: To assess the anti-fibrotic effects of NA49, we utilized murine PF models induced by radiation (IR) or bleomycin (BLM). We administered NA49 to the PF mice and evaluated its impact on lung fibrosis progression. We also investigated the molecular mechanisms underlying NA49's effects, focusing on its inhibition of EMT-related signaling pathways. Results: In our study, we evaluated the potential of a novel HSP27 inhibitor, NA49, in preclinical models of PF. NA49 effectively suppressed PF development in radiation and bleomycin-induced PF models. It reduced fibrosis, inhibited NFkB signaling, and downregulated EMT-related molecules. Importantly, we evaluated the safety profile of NA49 by assessing its impact on DNA strand breakage. Compared to previous HSP27 inhibitors, NA49 showed lower levels of DNA damage in human lung epithelial cells, and suggests that NA49 may have reduced toxicity compared to other HSP27 inhibitors. Overall, our results demonstrate that NA49 effectively inhibits PF development in preclinical models. It reduces lung fibrosis, inhibits EMT-related signaling pathways, and exhibits improved safety profiles. These findings highlight the potential of NA49 as a promising candidate for the treatment of PF. Conclusion: NA49 exhibited significant anti-fibrotic effects, inhibiting fibrosis development and EMT-related signaling pathways. Moreover, NA49 showed improved safety profiles compared to previous HSP27 inhibitors.

7.
J Cell Physiol ; 237(12): 4504-4516, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36250997

RESUMO

Chronic liver injury follows inflammation and liver fibrosis; however, the molecular mechanism underlying fibrosis has not been fully elucidated. In this study, the role of ductal WW domain-containing transcription regulator 1 (WWTR1)/transcriptional coactivator with PDZ-binding motif (TAZ) was investigated after liver injury. Ductal TAZ-knockout (DKO) mice showed decreased liver fibrosis following a Diethyl 1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate (DDC) diet compared to wild-type (WT) mice, as evidenced by decreased expression levels of fibrosis inducers, including connective tissue growth factor (Ctgf)/cellular communication network factor 2 (CCN2), cysteine-rich angiogenic inducer 61 (Cyr61/CCN1), and transforming growth factor beta 1 (Tgfb1), in DKO mice. Similarly, TAZ-knockout (KO) cholangiocyte organoids showed decreased expression of fibrosis inducers. Additionally, the culture supernatant of TAZ-KO cholangiocyte organoids decreased the fibrogenic gene expression in liver stellate cells. Further studies revealed that prominin 1 (PROM1/CD133) stimulated TAZ for fibrosis. After the administration of DDC diet, fibrosis was decreased in CD133-KO (CD133-KO) mice compared to that in WT mice. Similarly, CD133-KO cholangiocyte organoids showed decreased Ctgf, Cyr61, and Tgfb1 expression levels compared to WT cholangiocyte organoids. Mechanistically, CD133 stabilized TAZ via Src activation. Inhibition of Src decreased TAZ levels. Similarly, CD133-knockdown HCT116 cells showed decreased TAZ levels, but reintroduction of active Src recovered the TAZ levels. Taken together, our results suggest that TAZ facilitates liver fibrosis after a DDC diet via the CD133-Src-TAZ axis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Doença Hepática Crônica Induzida por Substâncias e Drogas , Transativadores , Animais , Camundongos , Dieta , Fibrose , Peptídeos e Proteínas de Sinalização Intracelular , Fígado , Cirrose Hepática/induzido quimicamente , Camundongos Knockout , Fatores de Transcrição/genética , Proteínas Proto-Oncogênicas pp60(c-src) , Proteínas Adaptadoras de Transdução de Sinal/genética
8.
Biomed Pharmacother ; 152: 113245, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689858

RESUMO

Psoriasis is a chronic skin inflammation caused by a dysfunctional immune system, which causes systemic inflammation in various organs and tissues. Due to the risk of systemic inflammation and recurrence of psoriasis, it is important to identify the critical targets in the pathogenesis of psoriasis and develop targeted therapeutics. Dimerized translationally controlled tumor protein (dTCTP) promotes immune cell activation as a pro-inflammatory cytokine and plays a role in developing allergic diseases such as asthma and rhinitis. Here, we sought to explore whether dTCTP and its inhibition contributed to the development and control of imiquimod (IMQ)-induced psoriasis. Topical application of IMQ inflamed the skin of the back and ear, increased inflammatory cytokines, and decreased regulatory T cell markers. Interestingly, TCTP was significantly increased in inflamed skin and immune cells such as T cells, B cells, and macrophages after IMQ treatment and was secreted into the serum to undergo dimerization. Extracellular dTCTP treatment selectively suppressed regulatory T (Treg) cells, not other effector T helper (Th) cells, and increased M1 macrophages. Moreover, dTCTP-binding peptide 2 (dTBP2), a dTCTP inhibitor peptide, effectively attenuated the systemic inflammatory responses, including Th17 cell response, and alleviated psoriatic skin inflammation. dTBP2 blocked dTCTP-mediated Treg suppression and stimulated the expression of Treg cell markers in the spleen and inflammatory skin lesions. These results suggest that dTCTP dysregulated immune balance through Treg suppression in psoriatic inflammation and that functional inhibition of dTCTP by dTBP2 maintained immune homeostasis and attenuated inflammatory skin diseases by expanding Treg cells.


Assuntos
Psoríase , Linfócitos T Reguladores , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Imiquimode/farmacologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/farmacologia , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Pele , Linfócitos T Reguladores/metabolismo , Células Th17 , Proteína Tumoral 1 Controlada por Tradução
9.
Cell Mol Life Sci ; 79(3): 186, 2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35279781

RESUMO

Transcriptional co-activator with PDZ-binding motif (TAZ) is a key mediator of the Hippo signaling pathway and regulates structural and functional homeostasis in various tissues. TAZ activation is associated with the development of pancreatic cancer in humans, but it is unclear whether TAZ directly affects the structure and function of the pancreas. So we sought to identify the TAZ function in the normal pancreas. TAZ defect caused structural changes in the pancreas, particularly islet cell shrinkage and decreased insulin production and ß-cell markers expression, leading to hyperglycemia. Interestingly, TAZ physically interacted with the pancreatic and duodenal homeobox 1 (PDX1), a key insulin transcription factor, through the N-terminal domain of TAZ and the homeodomain of PDX1. TAZ deficiency decreased the DNA-binding and transcriptional activity of PDX1, whereas TAZ overexpression promoted PDX1 activity and increased insulin production even in a low glucose environment. Indeed, high glucose increased insulin production by turning off the Hippo pathway and inducing TAZ activation in pancreatic ß-cells. Ectopic TAZ overexpression along with PDX1 activation was sufficient to produce insulin in non-ß-cells. TAZ deficiency impaired the mesenchymal stem cell differentiation into insulin-producing cells (IPCs), whereas TAZ recovery restored normal IPCs differentiation. Compared to WT control, body weight increased in TAZ-deficient mice with age and even more with a high-fat diet (HFD). TAZ deficiency significantly exacerbated HFD-induced glucose intolerance and insulin resistance. Therefore, TAZ deficiency impaired pancreatic insulin production, causing hyperglycemia and exacerbating HFD-induced insulin resistance, indicating that TAZ may have a beneficial effect in treating insulin deficiency in diabetes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Homeodomínio/metabolismo , Insulina/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diferenciação Celular , Linhagem Celular , Dieta Hiperlipídica , Glucose/farmacologia , Via de Sinalização Hippo/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Hiperglicemia/veterinária , Insulina/genética , Resistência à Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Transativadores/genética , Ativação Transcricional
10.
Matrix Biol ; 107: 40-58, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35139425

RESUMO

Although shed syndecan-2 potentiated the tumorigenic activities of colon cancer cells, how shed syndecan-2 increases this tumorigenic potential remains unclear. Using an orthotopic mouse model of colon cancer, we show that shed syndecan-2 increases colon cancer progression by cooperatively promoting angiogenesis. Co-administration with a synthetic peptide of shed syndecan-2 (S2LQ) enhanced the survival and tumor engraftment of luciferase-expressing CT26 colon adenocarcinoma cells orthotopically implanted into the cecum of BALB/c mice. Intravenous injection of S2LQ further enhanced the growth of orthotopic tumors in the cecum, with increases in the tissue infiltration of macrophages and the formation of blood vessels, mainly in peripheral layers of the tumor facing the stroma. Furthermore, S2LQ stabilized HIF1α and enhanced the VEGF expression in human colon cancer cell lines, and increased the migration of RAW 264.7 murine macrophage cells and bone marrow-derived macrophages. Finally, S2LQ increased the tube formation of vascular endothelial cells in vitro. Together, these data demonstrate that shed syndecan-2 enhances tumorigenic activity by increasing the crosstalk of cancer cells with tumor-associated macrophages and endothelial cells to enhance angiogenesis for colon cancer progression in the tumor microenvironment.


Assuntos
Neoplasias do Colo , Sindecana-2 , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Progressão da Doença , Células Endoteliais/metabolismo , Camundongos , Neovascularização Patológica/metabolismo , Sindecana-2/genética , Sindecana-2/metabolismo , Microambiente Tumoral
11.
Nat Commun ; 13(1): 653, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115527

RESUMO

Mitochondria are energy-generating organelles and mitochondrial biogenesis is stimulated to meet energy requirements in response to extracellular stimuli, including exercise. However, the mechanisms underlying mitochondrial biogenesis remain unknown. Here, we demonstrate that transcriptional coactivator with PDZ-binding motif (TAZ) stimulates mitochondrial biogenesis in skeletal muscle. In muscle-specific TAZ-knockout (mKO) mice, mitochondrial biogenesis, respiratory metabolism, and exercise ability were decreased compared to wild-type mice. Mechanistically, TAZ stimulates the translation of mitochondrial transcription factor A via Ras homolog enriched in brain (Rheb)/Rheb like 1 (Rhebl1)-mTOR axis. TAZ stimulates Rhebl1 expression via TEA domain family transcription factor. Rhebl1 introduction by adeno-associated virus or mTOR activation recovered mitochondrial biogenesis in mKO muscle. Physiologically, mKO mice did not stimulate exercise-induced mitochondrial biogenesis. Collectively, our results suggested that TAZ is a novel stimulator for mitochondrial biogenesis and exercise-induced muscle adaptation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a DNA/genética , Mitocôndrias Musculares/genética , Proteínas Mitocondriais/genética , Biogênese de Organelas , Condicionamento Físico Animal , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Células Cultivadas , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
12.
J Lipid Res ; 62: 100152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34808194

RESUMO

Testosterone is a hormone essential for male reproductive function. It is produced primarily by Leydig cells in the testicle through activation of steroidogenic acute regulatory protein and a series of steroidogenic enzymes, including a cytochrome P450 side-chain cleavage enzyme (cytochome P450 family 11 subfamily A member 1), 17α-hydroxylase (cytochrome P450 family 17 subfamily A member 1), and 3ß-hydroxysteroid dehydrogenase. These steroidogenic enzymes are mainly regulated at the transcriptional level, and their expression is increased by the nuclear receptor 4A1. However, the effect on Leydig cell function of a small molecule-activating ligand, amodiaquine (AQ), is unknown. We found that AQ effectively and significantly increased testosterone production in TM3 and primary Leydig cells through enhanced expression of steroidogenic acute regulatory protein, cytochome P450 family 11 subfamily A member 1, cytochrome P450 family 17 subfamily A member 1, and 3ß-hydroxysteroid dehydrogenase. Concurrently, AQ dose-dependently increased the expression of 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme in the cholesterol synthesis pathway, through induction of the transcriptional and DNA-binding activities of nuclear receptor 4A1, contributing to increased cholesterol synthesis in Leydig cells. Furthermore, AQ increased the expression of fatty acid synthase and diacylglycerol acyltransferase and potentiated de novo synthesis of fatty acids and triglycerides (TGs). Lipidomics profiling further confirmed a significant elevation of intracellular lipid and TG levels by AQ in Leydig cells. These results demonstrated that AQ effectively promotes testosterone production and de novo synthesis of cholesterol and TG in Leydig cells, indicating that AQ may be beneficial for treating patients with Leydig cell dysfunction and subsequent testosterone deficiency.


Assuntos
Amodiaquina/farmacologia , Colesterol/biossíntese , Células Intersticiais do Testículo/efeitos dos fármacos , Testosterona/biossíntese , Triglicerídeos/biossíntese , Animais , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Front Pharmacol ; 12: 764321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737708

RESUMO

Dimerized translationally controlled tumor protein (dTCTP) amplifies allergic responses through activation of several types of immune cells and release of inflammatory mediators. In particular, dTCTP plays an important role in histamine release by triggering mast cells and has been proposed as a target in the treatment of allergic diseases. dTCTP-binding peptide 2 (dTBP2) is known to attenuate severe allergic rhinitis and asthma through inhibition of dTCTP activity on airway epithelial cells and T cells; however, it is unclear whether dTBP2 affects mast cell function and mast cell disease. In this study, we explored the effects of dTBP2 on mast cell degranulation and allergen-induced anaphylactic reactions. We found that bacterial product lipopolysaccharide increased the expression of dTCTP in mast cells and rapidly released dTCTP by the mast cell stimulator compound 48/80. Interestingly, the released dTCTP further promoted mast cell degranulation in an autocrine activation manner and increased calcium mobilization in mast cells, which is essential for degranulation. Furthermore, dTBP2 directly and dose-dependently inhibited in vitro mast cell degranulation enhanced by compound 48/80, suggesting a direct and potent anti-anaphylactic activity of dTBP2. dTBP2 also significantly suppressed the dTCTP-induced degranulation and histamine release through inhibition of the p38 MAPK signaling pathway and suppression of lysosomal expansion and calcium mobilization in mast cells. More importantly, in vivo administration of dTBP2 decreased mortality and significantly attenuated histamine release and inflammatory cytokine production in compound 48/80-induced systemic anaphylactic reactions. These results suggest that dTBP2 is beneficial for the control of anaphylaxis with increased dTCTP.

14.
Biomed Pharmacother ; 143: 112225, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649353

RESUMO

Heat shock protein beta-1 (HSPB1) is a multifaceted protein that controls cellular stress, modulates cell differentiation and development, and inhibits apoptosis of cancer cells. Increased HSPB1 expression is highly associated with poor outcomes in lung cancer by enhancing cell migration and invasion; therefore, targeting HSPB1 may be a promising therapeutic for lung cancer and fibrosis. Although the HSPB1 inhibitor J2 has been reported to exhibit potent antifibrotic effects, it remains unclear whether and how J2 directly modulates inflammatory immune responses in pulmonary fibrosis. In this study, we found that J2 potently attenuated irradiation or bleomycin-induced pulmonary fibrosis by significantly inhibiting the infiltration and activation of T cells and macrophages. J2 inhibited T-cell proliferation and subsequently suppressed T helper cell development. Although there was no significant effect of J2 on cell proliferation of M1 and M2 macrophages, J2 specifically increased the expression of Ym1 in M2 macrophages without affecting the expression of other M2 markers. Interestingly, J2 increased lysosomal degradation of HSPB1 and inhibited HSPB1-induced repression of signal transducer and activator of transcription 6 (STAT6), which simultaneously increased STAT6 and Ym1 expression. Ym1 production and secretion by J2-treated M2 macrophages substantially decreased IL-8 production by airway epithelial cells in vitro and in vivo, resulting in attenuation of airway inflammation. Taken together, we suggest that J2 has potential as a therapeutic agent for pulmonary fibrosis with increased HSPB1 expression through direct immune suppression by Ym1 production by M2 macrophages as well as T-cell suppression.


Assuntos
Anti-Inflamatórios/farmacologia , Antifibróticos/farmacologia , Proteínas de Choque Térmico/antagonistas & inibidores , Lectinas/metabolismo , Pulmão/efeitos dos fármacos , Chaperonas Moleculares/antagonistas & inibidores , Comunicação Parácrina , Pneumonia/prevenção & controle , Fibrose Pulmonar/prevenção & controle , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Bleomicina , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Pneumonia/etiologia , Pneumonia/imunologia , Pneumonia/metabolismo , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/metabolismo , Células RAW 264.7 , Doses de Radiação , Transdução de Sinais
15.
Biomed Pharmacother ; 144: 112316, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34628164

RESUMO

Dimeric translationally controlled tumor protein (dTCTP), also known as histamine-releasing factor, amplifies allergic responses and its production has been shown to increase in inflammatory diseases such as allergic asthma. Despite the critical role of dTCTP in allergic inflammation, little is known about its production pathways, associated cellular networks, and underlying molecular mechanisms. In this study, we explored the dTCTP-mediated inflammatory networks and molecular mechanisms of dTCTP associated with lipopolysaccharides (LPS)-induced severe asthma. LPS stimulation increased dTCTP production by mast cells and dTCTP secretion during degranulation, and extracellular dTCTP subsequently increased the production of pro-inflammatory molecules, including IL-8, by airway epithelial cells without affecting mast cell activation. Furthermore, dimeric TCTP-binding peptide 2 (dTBP2), a dTCTP inhibitor peptide, selectively blocked the dTCTP-mediated signaling network from mast cells to epithelial cells and decreased IL-8 production through IkB induction and nuclear p65 export in airway epithelial cells. More importantly, dTBP2 efficiently attenuated LPS-induced severe airway inflammation in vivo, resulting in decreased immune cell infiltration and IL-17 production and attenuated dTCTP secretion. These results suggest that dTCTP produced by mast cells exacerbates airway inflammation through activation of airway epithelial cells in a paracrine signaling manner, and that dTBP2 is beneficial in the treatment of severe airway inflammation by blocking the dTCTP-mediated inflammatory cellular network.


Assuntos
Antiasmáticos/farmacologia , Anti-Inflamatórios/farmacologia , Asma/prevenção & controle , Células Epiteliais/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Peptídeos/farmacologia , Pneumonia/prevenção & controle , Proteína Tumoral 1 Controlada por Tradução/metabolismo , Animais , Asma/induzido quimicamente , Asma/imunologia , Asma/metabolismo , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Lipopolissacarídeos , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos Endogâmicos C57BL , Ovalbumina , Comunicação Parácrina/efeitos dos fármacos , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Pneumonia/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
16.
Mol Cells ; 44(5): 318-327, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-33972470

RESUMO

CD4+ T helper (Th) cells play a crucial role in the modulation of innate and adaptive immune responses through the differentiation of Th precursor cells into several subsets, including Th1, Th2, Th17, and regulatory T (Treg) cells. Effector Th and Treg cells are distinguished by the production of signature cytokines and are important for eliminating intracellular and extracellular pathogens and maintaining immune homeostasis. Stimulation of naïve Th cells by T cell receptor and specific cytokines activates master transcription factors and induces lineage specification during the differentiation of Th cells. The master transcription factors directly activate the transcription of signature cytokine genes and also undergo post-translational modifications to fine-tune cytokine production and maintain immune balance through cross-regulation with each other. This review highlights the post-translational modifications of master transcription factors that control the differentiation of effector Th and Treg cells and provides additional insights on the immune regulation mediated by protein arginine-modifying enzymes in effector Th cells.


Assuntos
Processamento de Proteína Pós-Traducional/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Fatores de Transcrição/imunologia , Diferenciação Celular , Humanos
17.
Arch Pharm Res ; 44(3): 253-262, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33770379

RESUMO

Transcriptional coactivator with PDZ-binding motif (TAZ) has been extensively characterized in organ development, tissue regeneration, and tumor progression. In particular, TAZ functions as a Hippo mediator that regulates organ size, tumor growth and migration. It is highly expressed in various types of human cancer, and has been reported to be associated with tumor metastasis and poor outcomes in cancer patients, suggesting that TAZ is an oncogenic regulator. Yes-associated protein (YAP) has 60% similarity in amino acid sequence to TAZ and plays redundant roles with TAZ in the regulation of cell proliferation and migration of cancer cells. Therefore, TAZ and YAP, which are encoded by paralogous genes, are referred to as TAZ/YAP and are suggested to be functionally equivalent. Despite its similarity to YAP, TAZ can be clearly distinguished from YAP based on its genetic, structural, and functional aspects. In addition, targeting superabundant TAZ can be a promising therapeutic strategy for cancer treatment; however, persistent TAZ inactivation may cause failure of tissue homeostatic control. This review focuses primarily on TAZ, not YAP, discusses its structural features and physiological functions in the regulation of tissue homeostasis, and provides new insights into the drug development targeting TAZ to control reproductive and musculoskeletal disorders.


Assuntos
Homeostase , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Fatores de Transcrição/química , Proteínas de Sinalização YAP
18.
FASEB J ; 34(4): 5332-5347, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32067268

RESUMO

Transcriptional coactivator with PDZ-binding motif (TAZ) plays crucial role in maintaining testicular structure and function via regulation of senescence of spermatogenic cells. However, it remains unclear whether TAZ is involved in testosterone biosynthesis in testicular Leydig cells. We found that TAZ deficiency caused aberrant Leydig cell expansion and increased lipid droplet formation, which was significantly associated with increased lipogenic enzyme expression. Additionally, the expression of key steroidogenic enzymes, including steroidogenic acute regulatory protein, cytochrome P450 (CYP) 11A1, CYP17A1, and 3ß-hydroxysteroid dehydrogenase, was greatly increased in TAZ-deficient testes and primary Leydig cells. Interestingly, the transcriptional activity of nuclear receptor 4 A1 (NR4A1) was dramatically suppressed by TAZ; however, the protein expression and the subcellular localization of NR4A1 were not affected by TAZ. TAZ directly associated with the N-terminal region of NR4A1 and substantially suppressed its DNA-binding and transcriptional activities. Stable expression of TAZ in the mouse Leydig TM3 cell line decreased the expression of key steroidogenic enzymes, whereas knockdown of endogenous TAZ in TM3 cells increased transcripts of steroidogenic genes induced by NR4A1. Consistently, testosterone production was enhanced within TAZ-deficient Leydig cells. However, TAZ deficiency resulted in decreased testosterone secretion caused by dysfunctional mitochondria and lysosomes. Therefore, TAZ plays essential role in NR4A1-induced steroidogenic enzyme expression and testosterone production in Leydig cells.


Assuntos
17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Células Intersticiais do Testículo/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Fosfoproteínas/antagonistas & inibidores , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Testosterona/metabolismo , Transativadores/fisiologia , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo
19.
Biochem Biophys Res Commun ; 524(1): 242-248, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31983436

RESUMO

Ultraviolet (UV) irradiation induces the proliferation and differentiation of keratinocytes in the basal layer of the epidermis, which increases epidermal thickness in skin regeneration. However, the mechanism underlying this phenomenon is not yet known in detail. In this study, we aimed to demonstrate that the transcriptional coactivator with PDZ-binding motif (TAZ) stimulates epidermal regeneration by increasing keratinocyte proliferation. During epidermal regeneration, TAZ is localized in the nucleus of keratinocytes of the basal layer and stimulates epidermal growth factor receptor (EGFR) signaling. TAZ depletion in keratinocytes decreased EGFR signaling activation, which delays epidermal regeneration. Interestingly, TAZ stimulated the transcription of amphiregulin (AREG), a ligand of EGFR, through TEAD-mediated transcriptional activation. Together, these results show that TAZ stimulates EGFR signaling through AREG induction, suggesting that it plays an important role in epidermal regeneration.


Assuntos
Anfirregulina/genética , Epiderme/fisiologia , Regeneração , Transativadores/metabolismo , Transcrição Gênica , Raios Ultravioleta , Proteínas Adaptadoras de Transdução de Sinal , Anfirregulina/metabolismo , Animais , Proliferação de Células/efeitos da radiação , Epiderme/efeitos da radiação , Receptores ErbB/metabolismo , Deleção de Genes , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regeneração/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Transcrição Gênica/efeitos da radiação
20.
Metabolites ; 9(10)2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31546652

RESUMO

Steroidomics, an analytical technique for steroid biomarker mining, has received much attention in recent years. This systematic review and functional analysis, following the PRISMA statement, aims to provide a comprehensive review and an appraisal of the developments and fundamental issues in steroid high-throughput analysis, with a focus on cancer research. We also discuss potential pitfalls and proposed recommendations for steroidomics-based clinical research. Forty-five studies met our inclusion criteria, with a focus on 12 types of cancer. Most studies focused on cancer risk prediction, followed by diagnosis, prognosis, and therapy monitoring. Prostate cancer was the most frequently studied cancer. Estradiol, dehydroepiandrosterone, and cortisol were mostly reported and altered in at least four types of cancer. Estrogen and estrogen metabolites were highly reported to associate with women-related cancers. Pathway enrichment analysis revealed that steroidogenesis; androgen and estrogen metabolism; and androstenedione metabolism were significantly altered in cancers. Our findings indicated that estradiol, dehydroepiandrosterone, cortisol, and estrogen metabolites, among others, could be considered oncosteroids. Despite noble achievements, significant shortcomings among the investigated studies were small sample sizes, cross-sectional designs, potential confounding factors, and problematic statistical approaches. More efforts are required to establish standardized procedures regarding study design, analytical procedures, and statistical inference.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA