Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Oncol ; 44(5): 1607-13, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24604087

RESUMO

Decursin, a coumarin compound, was first isolated from the roots of Angelica gigas almost four decades ago. It was found to exhibit cytotoxicity against various human cancer cells and to possess anti-amnesic activity in vivo through the inhibition of AChE activity. However, the effect of decursin on breast cancer invasion is unknown. Matrix metalloproteinase-9 (MMP-9) is known to be an important factor for cancer cell invasion. Therefore, in this study, we investigated the inhibitory effect of decursin on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion, as well as the molecular mechanisms involved in MCF-7 cells. Our results showed that decursin inhibits TPA-induced MMP-9 expression and cell invasion through the suppression of NF-κB. Furthermore, decursin repressed the TPA-induced phosphorylation of p38 MAPK and inhibited TPA-induced translocation of PKCα from the cytosol to the membrane, but did not affect the translocation of PKCδ. These results indicate that decursin-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of the PKCα, MAPK and NF-κB pathways in MCF-7 cells. Thus, decursin may have potential value in restricting breast cancer metastasis.


Assuntos
Benzopiranos/farmacologia , Neoplasias da Mama/patologia , Butiratos/farmacologia , Carcinógenos/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica/patologia , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Metaloproteinase 9 da Matriz/genética
2.
Appl Opt ; 50(33): 6206-13, 2011 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22108878

RESUMO

We have developed a new IR optical system that consists of three mirrors and four lenses, and that operates in the temperature range 8°C-32°C. This temperature range can induce thermoelastic deformation in the lenses and their mounting subassembly, leading to a large defocus error associated with the displacement of the lenses inside the barrel. We suggest using a new three-shell-based athermalization structure composed of two materials with different coefficients of thermal expansion (Invar and aluminum). A finite element analysis and the experiment data were used to confirm that this new athermalization barrel had a defocus error sensitivity of 11.6 nm/°C; this is an improvement on the widely used conventional single-shell titanium barrel model, which has a defocus error sensitivity of 29.8 nm/°C. This paper provides the technical details of the new athermalization design, and its computational and experimental performance results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA