Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39071309

RESUMO

Genetic changes and epigenetic modifications are associated with neuronal dysfunction in the pathogenesis of neurodegenerative disorders. However, the mechanism behind genetic mutations in the non-coding region of genes that affect epigenetic modifications remains unclear. Here, we identified an ALS-associated SNP located in the intronic region of MEF2C (rs304152), residing in a putative enhancer element, using convolutional neural network. The enhancer mutation of MEF2C reduces own gene expression and consequently impairs mitochondrial function in motor neurons. MEF2C localizes and binds to the mitochondria DNA, and directly modulates mitochondria-encoded gene expression. CRISPR/Cas-9-induced mutation of the MEF2C enhancer decreases expression of mitochondria-encoded genes. Moreover, MEF2C mutant cells show reduction of mitochondrial membrane potential, ATP level but elevation of oxidative stress. MEF2C deficiency in the upper and lower motor neurons of mice impairs mitochondria-encoded genes, and leads to mitochondrial metabolic disruption and progressive motor behavioral deficits. Together, MEF2C dysregulation by the enhancer mutation leads to mitochondrial dysfunction and oxidative stress, which are prevalent features in motor neuronal damage and ALS pathogenesis. This genetic and epigenetic crosstalk mechanism provides insights for advancing our understanding of motor neuron disease and developing effective treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA