Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2402935, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809078

RESUMO

Antimony selenosulfide (Sb2(S,Se)3) has recently emerged as a promising light-absorbing material, attributed to its tunable photovoltaic properties, low toxicity, and robust environmental stability. However, despite these advantages, the current record efficiency for Sb2(S,Se)3 solar cells significantly lags behind their Shockley-Queisser limit, especially when compared to other well-established chalcogenide-based thin-film solar cells, such as CdTe and Cu(In,Ga)Se2. This underperformance primarily arises from the formation of unfavorable defects, predominately located at deep energy levels, which act as recombination centers, thereby limiting the potential for performance enhancement in Sb2(S,Se)3 solar cells. Specifically, deep-level defects, such as sulfur vacancy (VS), have a lower formation energy, leading to severe non-radiative recombination and compromising device performance. To address this challenge, thioacetamide (TA), a sulfur-containing additive is introduced, into the precursor solution for the hydrothermal deposition of Sb2(S,Se)3. This results indicate that the incorporation of TA helps in passivating deep-level defects such as sulfur vacancies and in suppressing the formation of large voids within the Sb2(S,Se)3 absorber. Consequently, Sb2(S,Se)3 solar cells, with reduced carrier recombination and improved film quality, achieved a power conversion efficiency of 9.04%, with notable improvements in open-circuit voltage and fill factor. This work provides deeper insights into the passivation of deep-level donor-like VS defects through the incorporation of a sulfur-containing additive, highlighting pathways to enhance the photovoltaic performance of Sb2(S,Se)3 solar cells.

2.
Anal Chem ; 92(18): 12226-12234, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786447

RESUMO

Stochastic particle impact electrochemistry (SPIE) is considered one of the most important electro-analytical methods to understand the physicochemical properties of single entities. SPIE of individual insulating particles (IPs) has been particularly crucial for analyses of bioparticles. In this article, we introduce stochastic particle approach electrochemistry (SPAE) for electrochemical analyses of IPs, which is the advanced version of SPIE; SPAE is analogous to SPIE but focuses on deciphering a sudden current drop (SCD) by an IP-approach toward the edge of an ultramicroelectrode (UME). Polystyrene particles (PSPs) with and without different surface functionalities (-COOH and - NH3) as well as fixed human platelets (F-HPs) were used as model IPs. From theory based on finite element analysis, a sudden current drop (SCD) induced by an IP during electro-oxidation (or reduction) of a redox mediator on a UME can represent the rapid approach of an IP toward an edge of a UME, where a strong electric field is generated. It is also found that the amount of current drop, idrop, of an SCD depends strongly on both the size of an IP and the concentration of redox electrolyte. From simulations based on the SPAE model that fit the experimentally obtained SCDs of three types of PSPs or F-HP dispersed in solutions with two redox electrolytes, their size distribution histograms are estimated, from which their average radii determined by SPAE are compared to those from scanning electron microscopic images. In addition, the drift velocity and corresponding electric force of the PSPs and F-HPs during their approach toward an edge of a Pt UME are estimated, which cannot be addressed currently with SPIE. We further learned that the estimated drift velocity and the corresponding electric force could provide a relative order of the number of excess surface charges on the IPs.


Assuntos
Técnicas Eletroquímicas , Poliestirenos/análise , Eletricidade , Humanos , Microeletrodos , Tamanho da Partícula , Processos Estocásticos , Propriedades de Superfície
3.
Anal Chem ; 91(9): 5850-5857, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30942070

RESUMO

Energy storage systems (ESSs) using a Br-/Br2 redox reaction such as a Zn/Br redox flow battery (RFB) or a redox-enhanced electrochemical capacitor (Redox-EC) suffer from self-discharge reactions resulting in significant Coulombic loss. To inhibit the self-discharge, quaternary ammonium (Q+) and tetraalkylammonium (T+) bromide are added to form ionic liquid (QBr2 n+1) and solid (TBr3) polybromides during the ESS charging process. The electrochemical formation of liquid QBr2 n+1 and its electrochemical properties have been examined. The detailed mechanisms of ionic solid TBr3 formation, however, have not yet been explored. In this article, we analyzed the ionic liquid-to-solid phase transition of TBr3 particles using a time transient electrochemical method. We suggest the formation of ionic solid TBr3 particles via hydrated TBr3 droplets as an intermediate phase, which are generated by electro-oxidation of Br- in an aqueous TBr solution. We found the phase transition time of TBr3 particles is strongly dependent on the chemical structure of T+ and the concentration of TBr in an aqueous solution.

4.
Nat Commun ; 9(1): 3461, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150675

RESUMO

With increasing demand for high-capacity and rapidly rechargeable anodes, problems associated with unstable evolution of a solid-electrolyte interphase on the active anode surface become more detrimental. Here, we report the near fatigue-free, ultrafast, and high-power operations of lithium-ion battery anodes employing silicide nanowires anchored selectively to the inner surface of graphene-based micro-tubular conducting electrodes. This design electrically shields the electrolyte inside the electrode from an external potential load, eliminating the driving force that generates the solid-electrolyte interphase on the nanowire surface. Owing to this electric control, a solid-electrolyte interphase develops firmly on the outer surface of the graphene, while solid-electrolyte interphase-free nanowires enable fast electronic and ionic transport, as well as strain relaxation over 2000 cycles, with 84% capacity retention even at ultrafast cycling (>20C). Moreover, these anodes exhibit unprecedentedly high rate capabilities with capacity retention higher than 88% at 80C (vs. the capacity at 1C).

5.
Analyst ; 143(17): 4017-4021, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30091428

RESUMO

The speciation of quaternary ammonium polybromides (QBr2n+1) was quantitatively determined by voltammetric tribromide titration on a Pt ultramicroelectrode (UME). The concentration of Br3- in a QBr2n+1-water mixed solution (QBr2n+1-WMS) was electrochemically estimated by measuring the steady state current associated with the electro-reduction of Br3- in a linear sweep voltammogram (LSV). The pBr3- titration curves of QBr2n+1-WMSs show 2-4 plateaus, each of which relates to the formation of QBr2n+1 from Br3- and Br2. The values of pBr3- at these plateaus can be regarded as corrected equilibrium constants of QBr2n+1, K'eq(n), which is Keq(n)/γ±, where γ± is a mean activity coefficient in QBr2n+1-WMS. Based on the estimated K'eq(n), fractional diagrams of QBr2n+1 were obtained, which gave information on QBr2n+1 speciation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA