Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 7(9): 1054-1064, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35775456

RESUMO

A great number of butterfly species in the warmer climate have evolved to exhibit fascinating optical properties on their wing scales which can both regulate the wing temperature and exhibit structural coloring in order to increase their chances of survival. In particular, the Archaeoprepona demophon dorsal wing demonstrates notable radiative cooling performance and iridescent colors based on the nanostructure of the wing scale that can be characterized by the nanoporous matrix with the periodic nanograting structure on the top matrix surface. Inspired by the natural species, we demonstrate a multifunctional biomimetic film that reconstructs the nanostructure of the Archaeoprepona demophon wing scales to replicate the radiative cooling and structural coloring functionalities. We resorted to the SiO2 sacrificial template-based solution process to mimic the random porous structure and laser-interference lithography to reproduce the nanograting architecture of the butterfly wing scale. As a result, the biomimetic structure of the nanograted surface on top of the porous film demonstrated desirable heat transfer and optical properties for outstanding radiative cooling performance and iridescent structural coloring. In this regard, the film is capable of inducing the maximum temperature drop of 8.45 °C, and the color gamut of the biomimetic film can cover 91.8% of the standardized color profile (sRGB).


Assuntos
Borboletas , Nanoestruturas , Animais , Biomimética , Borboletas/fisiologia , Nanoestruturas/química , Dióxido de Silício , Asas de Animais/química , Asas de Animais/fisiologia
2.
ACS Appl Mater Interfaces ; 14(26): 30315-30323, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35732013

RESUMO

Plasmonic color printing has received significant attention owing to its advantages such as nonfading and nontoxic color expression, without necessitating the use of chemical dyes. Recently, color generation from laser-induced plasmonic nanostructures has been extensively explored because of its simplicity, cost-effectiveness, and large-scale processability. However, these methods usually utilize a top-down method that causes unexpected background colors. Here, we proposed a novel method of plasmonic color printing via a bottom-up type laser-induced photomodification process. In the proposed method, selective silver nanoparticles (Ag NPs) structure could be fabricated on a transparent substrate through a unique organometallic solution-based laser patterning process. A set of color palettes was formed on the basis of different processing parameters such as laser fluence, scanning speed, and baking time. This color change was verified by finite-difference time-domain (FDTD) simulations via monitoring the spectral peak shift of the localized surface plasmon resonance (LSPR) at Ag NPs. It was also confirmed that the colors can be fabricated at a relatively high scanning speed (≥10 mm/s) on a large substrate (>300 mm2). Since semitransparent color images can be patterned on various transparent substrates, this process will broaden the application range of laser-induced plasmonic color generation.

3.
Small Methods ; 6(5): e2200150, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35388984

RESUMO

Metal microhoneycomb structures have received considerable attention as a type of interaction-efficient functional devices owing to their unique morphology and material properties. Microhoneycomb structures are mainly fabricated using the well-known breath-figure method. However, additional post-treatments are required to produce a metal structure because it is a polymer-based process, and this necessitates expensive, complex, and multi-step fabrication processes. Therefore, a simple, low-cost metal honeycomb fabrication process is necessary. In this paper, the laser patterning of an organometallic solution to produce silver microhoneycomb (Ag microhoneycomb) structures is proposed. Various phenomena such as rapid organic evaporation, silver nanoparticle solidification, and material reorganization from Marangoni flow are found to enable patterning-induced microhoneycomb formation. Parametric studies demonstrate that the pore size can be easily controlled through simple laser parameter changes. In addition, cyclic voltammetry and electrochemical impedance spectroscopy studies confirm the potential electrochemical applications of the Ag microhoneycomb structures based on the variation of electrochemical redox behavior depending on the pore size. Owing to the excellent advantages of one-step laser patterning without any templates, the proposed process will likely promote the practical use of the metal microhoneycomb structures.

4.
Nanotechnology ; 32(31)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33892481

RESUMO

Designing uniform plasmonic surfaces in a large area is highly recommended for surface-enhanced Raman scattering (SERS). As periodic morphologies exhibit uniform SERS and optical tunability, diverse fabrication methods of periodic nanostructures have been reported for SERS applications. Laser interference lithography (LIL) is one of the most versatile tools since it can rapidly fabricate periodic patterns without the usage of photomasks. Here, we explore complex interference patterns for spatially uniform SERS sensors and its cost-effective fabrication method termed multi-exposure laser interference lithography (MELIL). MELIL can produce nearly periodic profiles along every direction confirmed by mathematical background, and in virtue of periodicity, we show that highly uniform Raman scattering (relative standard deviation <6%) can also be achievable in complex geometries as the conventional hole patterns. We quantitatively characterize the Raman enhancement of the MELIL complex patterns after two different metal deposition processes, Au e-beam evaporation and Ag electroplating, which results in 0.387 × 105and 1.451 × 105in enhancement factor respectively. This alternative, vacuum-free electroplating method realizes an even more cost-effective process with enhanced performance. We further conduct the optical simulation for MELIL complex patterns which exhibits the broadened and shifted absorption peaks. This result supports the potential of the expanded optical tunability of the suggested process.

5.
Sci Rep ; 11(1): 2262, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500481

RESUMO

As silver nanowires (Ag NWs) are usually manufactured by chemical synthesis, a patterning process is needed to use them as functional devices. Pulsed laser ablation is a promising Ag NW patterning process because it is a simple and inexpensive procedure. However, this process has a disadvantage in that target materials are wasted owing to the subtractive nature of the process involving the removal of unnecessary materials, and large quantities of raw materials are required. In this study, we report a minimum-waste laser patterning process utilizing silver nanoparticle (Ag NP) debris obtained through laser ablation of Ag NWs in liquid media. Since the generated Ag NPs can be used for several applications, wastage of Ag NWs, which is inevitable in conventional laser patterning processes, is dramatically reduced. In addition, electrophoretic deposition of the recycled Ag NPs onto non-ablated Ag NWs allows easy fabrication of junction-enhanced Ag NWs from the deposited Ag NPs. The unique advantage of this method lies in using recycled Ag NPs as building materials, eliminating the additional cost of junction welding Ag NWs. These fabricated Ag NW substrates could be utilized as transparent heaters and stretchable TCEs, thereby validating the effectiveness of the proposed process.

6.
Sensors (Basel) ; 18(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469441

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a promising analytical tool due to its label-free detection ability and superior sensitivity, which enable the detection of single molecules. Since its sensitivity is highly dependent on localized surface plasmon resonance, various methods have been applied for electric field-enhanced metal nanostructures. Despite the intensive research on practical applications of SERS, fabricating a sensitive and reproducible SERS sensor using a simple and low-cost process remains a challenge. Here, we report a simple strategy to produce a large-scale gold nanoparticle array based on laser interference lithography and the electrophoretic deposition of gold nanoparticles, generated through a pulsed laser ablation in liquid process. The fabricated gold nanoparticle array produced a sensitive, reproducible SERS signal, which allowed Rhodamine 6G to be detected at a concentration as low as 10-8 M, with an enhancement factor of 1.25 × 105. This advantageous fabrication strategy is expected to enable practical SERS applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA