Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 3131, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28600488

RESUMO

Flexible and crystallized indium-tin oxide (ITO) thin films were successfully obtained on plastic polyethylene terephthalate (PET) films with monolayered graphene as a platform. The highly crystalline ITO (c-ITO) was first fabricated on a rigid substrate of graphene on copper foil and it was subsequently transferred onto a PET substrate by a well-established technique. Despite the plasma damage during ITO deposition, the graphene layer effectively acted as a Cu-diffusion barrier. The c-ITO/graphene/PET electrode with the 60-nm-thick ITO exhibited a reasonable sheet resistance of ~45 Ω sq-1 and a transmittance of ~92% at a wavelength of 550 nm. The c-ITO on the monolayered graphene support showed significant enhancement in flexibility compared with the ITO/PET film without graphene because the atomically controlled monolayered graphene acted as a mechanically robust support. The prepared flexible transparent c-ITO/graphene/PET electrode was applied as the anode in a bulk heterojunction polymer solar cell (PSC) to evaluate its performance, which was comparable with that of the commonly used c-ITO/glass electrode. These results represent important progress in the fabrication of flexible transparent electrodes for future optoelectronics applications.

2.
ACS Appl Mater Interfaces ; 8(9): 5887-97, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26888039

RESUMO

Cancer cells, compared to normal cells, are under oxidative stress associated with an elevated level of reactive oxygen species (ROS) and are more vulnerable to oxidative stress induced by ROS generating agents. Thus, manipulation of the ROS level provides a logical approach to kill cancer cells preferentially, without significant toxicity to normal cells, and great efforts have been dedicated to the development of strategies to induce cytotoxic oxidative stress for cancer treatment. Fenton reaction is an important biological reaction in which irons convert hydrogen peroxide (H2O2) to highly toxic hydroxyl radicals that escalate ROS stress. Here, we report Fenton reaction-performing polymer (PolyCAFe) micelles as a new class of ROS-manipulating anticancer therapeutic agents. Amphiphilic PolyCAFe incorporates H2O2-generating benzoyloxycinnamaldehyde and iron-containing compounds in its backbone and self-assembles to form micelles that serve as Nano-Fenton reactors to generate cytotoxic hydroxyl radicals, killing cancer cells preferentially. When intravenously injected, PolyCAFe micelles could accumulate in tumors preferentially to remarkably suppress tumor growth, without toxicity to normal tissues. This study demonstrates the tremendous translatable potential of Nano-Fenton reactors as a new class of anticancer drugs.


Assuntos
Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Ferro/química , Ferro/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Compostos Ferrosos/química , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/uso terapêutico , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Radical Hidroxila/farmacologia , Ferro/uso terapêutico , Metalocenos , Camundongos , Camundongos Nus , Micelas , Células NIH 3T3 , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polímeros/síntese química , Polímeros/química , Espécies Reativas de Oxigênio/metabolismo , Transplante Heterólogo
3.
ACS Appl Mater Interfaces ; 7(28): 15256-62, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26120871

RESUMO

Design of materials to be heat-conductive in a preferred direction is a crucial issue for efficient heat dissipation in systems using stacked devices. Here, we demonstrate a facile route to fabricate polymer composites with directional thermal conduction. Our method is based on control of the orientation of fillers with anisotropic heat conduction. Melt-compression of solution-cast poly(vinylidene fluoride) (PVDF) and graphene nanoflake (GNF) films in an L-shape kinked tube yielded a lightweight polymer composite with the surface normal of GNF preferentially aligned perpendicular to the melt-flow direction, giving rise to a directional thermal conductivity of approximately 10 W/mK at 25 vol % with an anisotropic thermal conduction ratio greater than six. The high directional thermal conduction was attributed to the two-dimensional planar shape of GNFs readily adaptable to the molten polymer flow, compared with highly entangled carbon nanotubes and three-dimensional graphite fillers. Furthermore, our composite with its density of approximately 1.5 g/cm(3) was mechanically stable, and its thermal performance was successfully preserved above 100 °C even after multiple heating and cooling cycles. The results indicate that the methodology using an L-shape kinked tube is a new way to achieve polymer composites with highly anisotropic thermal conduction.

5.
Nanotechnology ; 22(20): 205703, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21444954

RESUMO

High dielectric constant aluminum oxide (Al(2)O(3)) is frequently used as the gate oxide in high electron mobility transistors and the impact of its deposition by radio frequency (RF) magnetron sputtering on the structural and electrical properties of multilayer epitaxial graphene (MLG) grown by graphitization of silicon carbide (SiC) is reported. Micro-Raman spectroscopy and temperature dependent Hall mobility measurements reveal that the processing induced changes to the structural and electrical properties of the MLG can be minimal when the oxide deposition conditions are optimal. High-resolution transmission electron microscopy (HRTEM) analysis confirms that the Al(2)O(3)/MLG interface is relatively sharp and that our thickness approximation of the MLG using angle resolved x-ray photoelectron spectroscopy (ARXPS) is accurate. An interface trap density of 5.1 × 10(10) eV(-1) cm(-2) was determined using capacitance-voltage techniques. The totality of our results indicates that ARXPS can be used as a nondestructive tool to measure the thickness of MLG, and that RF sputtered Al(2)O(3) can be used as a high dielectric (high-k) constant gate oxide in multilayer graphene based transistor applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA