Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMB Rep ; 57(6): 293-298, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835115

RESUMO

Microtubule acetylation has been shown to regulate actin filament dynamics by modulating signaling pathways that control actin organization, although the precise mechanisms remain unknown. In this study, we found that the downregulation of microtubule acetylation via the disruption ATAT1 (which encodes α-tubulin N-acetyltransferase 1) inhibited the expression of RhoA, a small GTPase involved in regulating the organization of actin filaments and the formation of stress fibers. Analysis of RHOA promoter and chromatin immunoprecipitation assays revealed that C/EBPß is a major regulator of RHOA expression. Interestingly, the majority of C/EBPß in ATAT1 knockout (KO) cells was found in the nucleus as a 27-kDa fragment (referred to as C/EBPßp27) lacking the N-terminus of C/EBPß. Overexpression of a gene encoding a C/EBPßp27-mimicking protein via an N-terminal deletion in C/EBPß led to competitive binding with wild-type C/EBPß at the C/EBPß binding site in the RHOA promoter, resulting in a significant decrease of RHOA expression. We also found that cathepsin L (CTSL), which is overexpressed in ATAT1 KO cells, is responsible for C/EBPßp27 formation in the nucleus. Treatment with a CTSL inhibitor led to the restoration of RHOA expression by downregulation of C/EBPßp27 and the invasive ability of ATAT1 KO MDA-MB-231 breast cancer cells. Collectively, our findings suggest that the downregulation of microtubule acetylation associated with ATAT1 deficiency suppresses RHOA expression by forming C/EBPßp27 in the nucleus through CTSL. We propose that CTSL and C/EBPßp27 may represent a novel therapeutic target for breast cancer treatment. [BMB Reports 2024; 57(6): 293-298].


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Regulação para Baixo , Proteína rhoA de Ligação ao GTP , Humanos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Regulação para Baixo/genética , Acetiltransferases/metabolismo , Acetiltransferases/genética , Regiões Promotoras Genéticas/genética , Acetilação , Catepsina L/metabolismo , Catepsina L/genética , Microtúbulos/metabolismo , Linhagem Celular Tumoral
2.
J Cell Physiol ; 238(12): 2812-2826, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37801327

RESUMO

Excessive production and accumulation of amyloid-beta (Aß) in the brain are one of the hallmarks of Alzheimer's disease (AD). Although oxidative stress is known to trigger and promote the progression of AD, the molecular relationship between oxidative stress and Aß production is not yet fully understood. In this study, we demonstrate that microtubule acetylation induced by oxidative stress plays a critical role in Aß production and secretion by altering the subcellular distribution of Aß precursor protein (APP)-containing lysosomal vesicles. Under oxidative stress, both H4-APPSwe/Ind and HEK293T-APPSwe/Ind cell lines showed increased microtubule acetylation and Aß secretion. Knockdown (KD) of alpha-tubulin N-acetyltransferase 1 (ATAT1) by using a lentiviral shRNA not only inhibited the generation of intermediate APP fragments, such as ß-CTF and AICD, but also suppressed Aß secretion. Oxidative stress promoted the dispersion of LAMP1-positive vesicles to the periphery of the cell through microtubule acetylation, leading to the formation of neutralized lysosomal vesicles (NLVs), which was inhibited by ATAT1 KD. Treatment of the cells with the dynein ATPase inhibitor EHNA or downregulation of LIS1, a regulator of dynein-mediated intracellular transport, increased the peripheral localization of NLVs and promoted Aß secretion, whereas KD of ADP ribosylation factor like GTPase 8B showed the opposite result. ATAT1 KD in the hippocampal region of the 5×FAD AD mouse model also showed significant reductions in Aß plaque accumulation and memory loss. Taken together, these findings suggest that oxidative stress-induced microtubule acetylation promotes the peripheral localization of lysosomal vesicles to form NLVs, thereby enhancing Aß secretion.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Camundongos , Acetilação , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Lisossomos/metabolismo , Microtúbulos/metabolismo , Estresse Oxidativo , Linhagem Celular
3.
J Cell Physiol ; 238(10): 2335-2347, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37659097

RESUMO

Matrix stiffness has been shown to play a critical role in cancer progression by influencing various cellular processes, including epidermal growth factor (EGF) signaling. However, the underlying molecular mechanisms are not fully understood. Here, we investigated the role of adaptor-related protein complex 1 subunit sigma 1 (AP1S1), a component of adaptor protein complex-1, in the regulation of EGF receptor (EGFR) intracellular trafficking during cancer cell progression. We found that AP1S1 expression was upregulated under stiff matrix conditions, resulting in the regulation of EGFR trafficking in non-small cell lung adenocarcinoma cells. Knockout of AP1S1 caused the lysosomal degradation of EGFR, leading to suppressed EGF-induced anaplastic lymphoma receptor tyrosine kinase phosphorylation. In addition, the downregulation of AP1S1 increased the sensitivity of H1975 cancer cells, which are resistant to tyrosine kinase inhibitors, to erlotinib. Collectively, our results suggest that AP1S1 could regulate EGFR recycling under stiff matrix conditions, and AP1S1 inhibition could be a novel strategy for treating cancer cells resistant to EGFR-targeted anticancer drugs.

4.
bioRxiv ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-36824957

RESUMO

The mechanisms underlying immune evasion and immunotherapy resistance in small cell lung cancer (SCLC) remain unclear. Herein, we investigate the role of CRACD tumor suppressor in SCLC. We found that CRACD is frequently inactivated in SCLC, and Cracd knockout (KO) significantly accelerates SCLC development driven by loss of Rb1, Trp53, and Rbl2. Notably, the Cracd-deficient SCLC tumors display CD8+ T cell depletion and suppression of antigen presentation pathway. Mechanistically, CRACD loss silences the MHC-I pathway through EZH2. EZH2 blockade is sufficient to restore the MHC-I pathway and inhibit CRACD loss-associated SCLC tumorigenesis. Unsupervised single-cell transcriptomic analysis identifies SCLC patient tumors with concomitant inactivation of CRACD, impairment of tumor antigen presentation, and downregulation of EZH2 target genes. Our findings define CRACD loss as a new molecular signature associated with immune evasion of SCLC cells and proposed EZH2 blockade as a viable option for CRACD-negative SCLC treatment.

5.
BMB Rep ; 55(4): 192-197, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35321783

RESUMO

Cell signals for growth factors depend on the mechanical properties of the extracellular matrix (ECM) surrounding the cells. Microtubule acetylation is involved in the transforming growth factor (TGF)-ß-induced myofibroblast differentiation in the soft ECM. However, the mechanism of activation of α-tubulin acetyltransferase 1 (α-TAT1), a major α-tubulin acetyltransferase, in the soft ECM is not well defined. Here, we found that casein kinase 2 (CK2) is required for the TGF-ß-induced activation of α-TAT1 that promotes microtubule acetylation in the soft matrix. Genetic mutation and pharmacological inhibition of CK2 catalytic activity specifically reduced microtubule acetylation in the cells cultured on a soft matrix rather than those cultured on a stiff matrix. Immunoprecipitation analysis showed that CK2α, a catalytic subunit of CK2, directly bound to the C-terminal domain of α-TAT1, and this interaction was more prominent in the cells cultured on the soft matrix. Moreover, the substitution of alanine with serine, the 236th amino acid located at the C-terminus, which contains the CK2-binding site of α-TAT1, significantly abrogated the TGF-ß-induced microtubule acetylation in the soft matrix, indicating that the successful binding of CK2 and the C-terminus of α-TAT1 led to the phosphorylation of serine at the 236th position of amino acids in α-TAT1 and regulation of its catalytic activity. Taken together, our findings provide novel insights into the molecular mechanisms underlying the TGF-ß-induced activation of α-TAT1 in a soft matrix. [BMB Reports 2022; 55(4): 192-197].


Assuntos
Caseína Quinase II , Fibroblastos , Acetiltransferases , Caseína Quinase II/metabolismo , Fibroblastos/metabolismo , Fosforilação , Serina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
6.
Nanomaterials (Basel) ; 13(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616060

RESUMO

Silicon carbide (SiC) is a very promising carbide material with various applications such as electrochemical supercapacitors, photocatalysis, microwave absorption, field-effect transistors, and sensors. Due to its enticing advantages of high thermal stability, outstanding chemical stability, high thermal conductivity, and excellent mechanical behavior, it is used as a potential candidate in various fields such as supercapacitors, water-splitting, photocatalysis, biomedical, sensors, and so on. This review mainly describes the various synthesis techniques of nanostructured SiC (0D, 1D, 2D, and 3D) and its properties. Thereafter, the ongoing research trends in electrochemical supercapacitor electrodes are fully excavated. Finally, the outlook of future research directions, key obstacles, and possible solutions are emphasized.

7.
Cell Oncol (Dordr) ; 44(6): 1287-1305, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34582006

RESUMO

PURPOSE: Spatiotemporal regulation of cell membrane dynamics is a major process that promotes cancer cell invasion by acting as a driving force for cell migration. Beta-Pix (ßPix), a guanine nucleotide exchange factor for Rac1, has been reported to be involved in actin-mediated cellular processes, such as cell migration, by interacting with various proteins. As yet, however, the molecular mechanisms underlying ßPix-mediated cancer cell invasion remain unclear. METHODS: The clinical significance of ßPix was analyzed in patients with colorectal cancer (CRC) using public clinical databases. Pull-down and immunoprecipitation assays were employed to identify novel binding partners for ßPix. Additionally, various cell biological assays including immunocytochemistry and time-lapse video microscopy were performed to assess the effects of ßPix on CRC progression. A ßPix-SH3 antibody delivery system was used to determine the effects of the ßPix-Dyn2 complex in CRC cells. RESULTS: We found that the Src homology 3 (SH3) domain of ßPix interacts with the proline-rich domain of Dynamin 2 (Dyn2), a large GTPase. The ßPix-Dyn2 interaction promoted lamellipodia formation, along with plasma membrane localization of membrane-type 1 matrix metalloproteinase (MT1-MMP). Furthermore, we found that Src kinase-mediated phosphorylation of the tyrosine residue at position 442 of ßPix enhanced ßPix-Dyn2 complex formation. Disruption of the ßPix-Dyn2 complex by ßPix-SH3 antibodies targeting intracellular ßPix inhibited CRC cell invasion. CONCLUSIONS: Our data indicate that spatiotemporal regulation of the Src-ßPix-Dyn2 axis is crucial for CRC cell invasion by promoting membrane dynamics and MT1-MMP recruitment into the leading edge. The development of inhibitors that disrupt the ßPix-Dyn2 complex may be a useful therapeutic strategy for CRC.


Assuntos
Membrana Celular/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Progressão da Doença , Dinamina II/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Movimento Celular/genética , Dinamina II/química , Regulação Neoplásica da Expressão Gênica , Ouro/química , Células HEK293 , Humanos , Metaloproteinase 14 da Matriz/metabolismo , Nanopartículas Metálicas/química , Invasividade Neoplásica , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Pseudópodes/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/química , Regulação para Cima , Proteínas rac1 de Ligação ao GTP/metabolismo , Domínios de Homologia de src
8.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199510

RESUMO

During aggressive cancer progression, cancer cells adapt to unique microenvironments by withstanding various cellular stresses, including endoplasmic reticulum (ER) stress. However, the mechanism whereby cancer cells overcome the ER stress to survive remains to be elucidated. Herein, we demonstrated that microtubule acetylation in cancer cells grown on a stiff matrix promotes cancer progression by preventing excessive ER stress. Downregulation of microtubule acetylation using shRNA or CRSIPR/Cas9 techniques targeting ATAT1, which encodes α-tubulin N-acetyltransferase (αTAT1), resulted in the upregulation of ER stress markers, changes in ER morphology, and enhanced tunicamycin-induced UPR signaling in cancer cells. A set of genes involved in cancer progression, especially focal adhesion genes, were downregulated in both ATAT1-knockout and tunicamycin-treated cells, whereas ATAT1 overexpression restored the gene expression inhibited by tunicamycin. Finally, the expression of ATAT1 and ER stress marker genes were negatively correlated in various breast cancer types. Taken together, our results suggest that disruption of microtubule acetylation is a potent therapeutic tool for preventing breast cancer progression through the upregulation of ER stress. Moreover, ATAT1 and ER stress marker genes may be useful diagnostic markers in various breast cancer types.


Assuntos
Acetiltransferases/genética , Neoplasias da Mama/genética , Estresse do Retículo Endoplasmático/genética , Proteínas dos Microtúbulos/genética , Tunicamicina/farmacologia , Acetilação/efeitos dos fármacos , Acetiltransferases/antagonistas & inibidores , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas dos Microtúbulos/antagonistas & inibidores , Microtúbulos/efeitos dos fármacos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA