Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(24)2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38132093

RESUMO

Fragile X (FMR1) premutation is a common mutation that affects about 1 in 200 females and 1 in 450 males and can lead to the development of fragile-X-associated tremor/ataxia syndrome (FXTAS). Although there is no targeted, proven treatment for FXTAS, research suggests that sulforaphane, an antioxidant present in cruciferous vegetables, can enhance mitochondrial function and maintain redox balance in the dermal fibroblasts of individuals with FXTAS, potentially leading to improved cognitive function. In a 24-week open-label trial involving 15 adults aged 60-88 with FXTAS, 11 participants successfully completed the study, demonstrating the safety and tolerability of sulforaphane. Clinical outcomes and biomarkers were measured to elucidate the effects of sulforaphane. While there were nominal improvements in multiple clinical measures, they were not significantly different after correction for multiple comparisons. PBMC energetic measures showed that the level of citrate synthase was higher after sulforaphane treatment, resulting in lower ATP production. The ratio of complex I to complex II showed positive correlations with the MoCA and BDS scores. Several mitochondrial biomarkers showed increased activity and quantity and were correlated with clinical improvements.


Assuntos
Leucócitos Mononucleares , Tremor , Adulto , Masculino , Feminino , Humanos , Tremor/tratamento farmacológico , Tremor/genética , Tremor/complicações , Proteína do X Frágil da Deficiência Intelectual/genética , Ataxia/tratamento farmacológico , Ataxia/genética , Biomarcadores
2.
Cells ; 12(17)2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37681866

RESUMO

The course of pathophysiological mechanisms involved in fragile X-associated tremor/ataxia syndrome (FXTAS) remains largely unknown. Previous proteomics and metabolomics studies conducted in blood samples collected from FMR1 premutation carriers with FXTAS reported abnormalities in energy metabolism, and precursors of gluconeogenesis showed significant changes in plasma expression levels in FMR1 premutation carriers who developed FXTAS. We conducted an analysis of postmortem human brain tissues from 44 donors, 25 brains with FXTAS, and 19 matched controls. We quantified the metabolite relative abundance in the inferior temporal gyrus and the cerebellum using untargeted mass spectrometry (MS)-based metabolomics. We investigated how the metabolite type and abundance relate to the number of cytosine-guanine-guanine (CGG) repeats, to markers of neurodegeneration, and to the symptoms of FXTAS. A metabolomic analysis identified 191 primary metabolites, the data were log-transformed and normalized prior to the analysis, and the relative abundance was compared between the groups. The changes in the relative abundance of a set of metabolites were region-specific with some overlapping results; 22 metabolites showed alterations in the inferior temporal gyrus, while 21 showed differences in the cerebellum. The relative abundance of cytidine was decreased in the inferior temporal gyrus, and a lower abundance was found in the cases with larger CGG expansions; oleamide was significantly decreased in the cerebellum. The abundance of 11 metabolites was influenced by changes in the CGG repeat number. A histological evaluation found an association between the presence of microhemorrhages in the inferior temporal gyrus and a lower abundance of 2,5-dihydroxypyrazine. Our study identified alterations in the metabolites involved in the oxidative-stress response and bioenergetics in the brains of individuals with FXTAS. Significant changes in the abundance of cytidine and oleamide suggest their potential as biomarkers and therapeutic targets for FXTAS.


Assuntos
Encéfalo , Tremor , Humanos , Citidina , Citosina , Guanina , Metabolômica , Ataxia/genética , Proteína do X Frágil da Deficiência Intelectual/genética
3.
Cells ; 12(13)2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37443745

RESUMO

Carriers of the FMR1 premutation (PM) allele are at risk of one or more clinical conditions referred to as FX premutation-associated conditions (FXPAC). Since the FMR1 gene is on the X chromosome, the activation ratio (AR) may impact the risk, age of onset, progression, and severity of these conditions. The aim of this study was to evaluate the reliability of AR measured using different approaches and to investigate potential correlations with clinical outcomes. Molecular and clinical assessments were obtained for 30 PM female participants, and AR was assessed using both Southern blot analysis (AR-Sb) and methylation PCR (AR-mPCR). Higher ARs were associated with lower FMR1 transcript levels for any given repeat length. The higher AR-Sb was significantly associated with performance, verbal, and full-scale IQ scores, confirming previous reports. However, the AR-mPCR was not significantly associated (p > 0.05) with these measures. Similarly, the odds of depression and the number of medical conditions were correlated with higher AR-Sb but not correlated with a higher AR-mPCR. This study suggests that AR-Sb may be a more reliable measure of the AR in female carriers of PM alleles. However, further studies are warranted in a larger sample size to fully evaluate the methylation status in these participants and how it may affect the clinical phenotype.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Feminino , Animais , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Reprodutibilidade dos Testes , Heterozigoto , Metilação , Alelos
4.
Sci Rep ; 13(1): 7050, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120588

RESUMO

Carriers of a premutation allele (PM) in the FMR1 gene are at risk of developing a number of Fragile X premutation asssociated disorders (FXPAC), including Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), Fragile X-associated Primary Ovarian Insufficiency (FXPOI), and Fragile X-associated neuropsychiatric disorders (FXAND). We have recently reported somatic CGG allele expansion in female PM; however, its clinical significance remains unclear. The aim of this study was to examine the potential clinical association between somatic FMR1 allele instability and PM associated disorders. Participants comprised of 424 female PM carriers age 0.3- 90 years. FMR1 molecular measures and clinical information on the presence of medical conditions, were determined for all subjects for primary analysis. Two sub-groups of participants (age ≥ 25, N = 377 and age ≥ 50, N = 134) were used in the analysis related to presence of FXPOI and FXTAS, respectively. Among all participants (N = 424), the degree of instability (expansion) was significantly higher (median 2.5 vs 2.0, P = 0.026) in participants with a diagnosis of attention deficit hyperactivity disorder (ADHD) compared to those without. FMR1 mRNA expression was significantly higher in subjects with any psychiatric disorder diagnosis (P = 0.0017); specifically, in those with ADHD (P = 0.009), and with depression (P = 0.025). Somatic FMR1 expansion was associated with the presence of ADHD in female PM and FMR1 mRNA levels were associated with the presence of mental health disorders. The findings of our research are innovative as they suggest a potential role of the CGG expansion in the clinical phenotype of PM and may potentially guide clinical prognosis and management.


Assuntos
Síndrome do Cromossomo X Frágil , Expansão das Repetições de Trinucleotídeos , Feminino , Humanos , Alelos , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , RNA Mensageiro , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
5.
Sci Rep ; 12(1): 10419, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729184

RESUMO

The fragile X mental retardation (FMR1) gene contains an expansion-prone CGG repeat within its 5' UTR. Alleles with 55-200 repeats are known as premutation (PM) alleles and confer risk for one or more of the FMR1 premutation (PM) disorders that include Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), Fragile X-associated Primary Ovarian Insufficiency (FXPOI), and Fragile X-Associated Neuropsychiatric Disorders (FXAND). PM alleles expand on intergenerational transmission, with the children of PM mothers being at risk of inheriting alleles with > 200 CGG repeats (full mutation FM) alleles) and thus developing Fragile X Syndrome (FXS). PM alleles can be somatically unstable. This can lead to individuals being mosaic for multiple size alleles. Here, we describe a detailed evaluation of somatic mosaicism in a large cohort of female PM carriers and show that 94% display some evidence of somatic instability with the presence of a series of expanded alleles that differ from the next allele by a single repeat unit. Using two different metrics for instability that we have developed, we show that, as with intergenerational instability, there is a direct relationship between the extent of somatic expansion and the number of CGG repeats in the originally inherited allele and an inverse relationship with the number of AGG interruptions. Expansions are progressive as evidenced by a positive correlation with age and by examination of blood samples from the same individual taken at different time points. Our data also suggests the existence of other genetic or environmental factors that affect the extent of somatic expansion. Importantly, the analysis of candidate single nucleotide polymorphisms (SNPs) suggests that two DNA repair factors, FAN1 and MSH3, may be modifiers of somatic expansion risk in the PM population as observed in other repeat expansion disorders.


Assuntos
Síndrome do Cromossomo X Frágil , Deficiência Intelectual , Regiões 5' não Traduzidas , Alelos , Ataxia , Criança , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Humanos , Deficiência Intelectual/genética , Mutação , Transativadores/genética , Tremor , Expansão das Repetições de Trinucleotídeos
6.
Brain Sci ; 9(3)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30832215

RESUMO

The fragile X-related disorders (FXDs) are a group of clinical conditions that result primarily from an unusual mutation, the expansion of a CGG-repeat tract in exon 1 of the FMR1 gene. Mouse models are proving useful for understanding many aspects of disease pathology in these disorders. There is also reason to think that such models may be useful for understanding the molecular basis of the unusual mutation responsible for these disorders. This review will discuss what has been learnt to date about mechanisms of repeat instability from a knock-in FXD mouse model and what the implications of these findings may be for humans carrying expansion-prone FMR1 alleles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA