Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983851

RESUMO

The viscoelectric effect concerns the increase in viscosity of a polar liquid in an electric field due to its interaction with the dipolar molecules and was first determined for polar organic liquids more than 80 y ago. For the case of water, however, the most common polar liquid, direct measurement of the viscoelectric effect is challenging and has not to date been carried out, despite its importance in a wide range of electrokinetic and flow effects. In consequence, estimates of its magnitude for water vary by more than three orders of magnitude. Here, we measure the viscoelectric effect in water directly using a surface force balance by measuring the dynamic approach of two molecularly smooth surfaces with a controlled, uniform electric field between them across highly purified water. As the water is squeezed out of the gap between the approaching surfaces, viscous damping dominates the approach dynamics; this is modulated by the viscoelectric effect under the uniform transverse electric field across the water, enabling its magnitude to be directly determined as a function of the field. We measured a value for this magnitude, which differs by one and by two orders of magnitude, respectively, from its highest and lowest previously estimated values.

2.
Philos Trans A Math Phys Eng Sci ; 375(2089)2017 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-28167581

RESUMO

We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend's attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier-Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'.

3.
Biomech Model Mechanobiol ; 15(2): 331-44, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26081725

RESUMO

Mechanical stresses due to blood flow regulate vascular endothelial cell structure and function and play a key role in arterial physiology and pathology. In particular, the development of atherosclerosis has been shown to correlate with regions of disturbed blood flow where endothelial cells are round and have a randomly organized cytoskeleton. Thus, deciphering the relation between the mechanical environment, cell structure, and cell function is a key step toward understanding the early development of atherosclerosis. Recent experiments have demonstrated very rapid (∼100 ms) and long-distance (∼10 µm) cellular mechanotransduction in which prestressed actin stress fibers play a critical role. Here, we develop a model of mechanical signal transmission within a cell by describing strains in a network of prestressed viscoelastic stress fibers following the application of a force to the cell surface. We find force transmission dynamics that are consistent with experimental results. We also show that the extent of stress fiber alignment and the direction of the applied force relative to this alignment are key determinants of the efficiency of mechanical signal transmission. These results are consistent with the link observed experimentally between cytoskeletal organization, mechanical stress, and cellular responsiveness to stress. Based on these results, we suggest that mechanical strain of actin stress fibers under force constitutes a key link in the mechanotransduction chain.


Assuntos
Actinas/metabolismo , Mecanotransdução Celular , Modelos Biológicos , Fibras de Estresse/metabolismo , Fenômenos Biomecânicos , Proteínas de Membrana/metabolismo
4.
Biophys J ; 109(2): 209-19, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26200857

RESUMO

We have developed a technique to directly quantify cell-substrate adhesion force using micropipette aspiration. The micropipette is positioned perpendicular to the surface of an adherent cell and a constant-rate aspiration pressure is applied. Since the micropipette diameter and the aspiration pressure are our control parameters, we have direct knowledge of the aspiration force, whereas the cell behavior is monitored either in brightfield or interference reflection microscopy. This setup thus allows us to explore a range of geometric parameters, such as projected cell area, adhesion area, or pipette size, as well as dynamical parameters such as the loading rate. We find that cell detachment is a well-defined event occurring at a critical aspiration pressure, and that the detachment force scales with the cell adhesion area (for a given micropipette diameter and loading rate), which defines a critical stress. Taking into account the cell adhesion area, intrinsic parameters of the adhesion bonds, and the loading rate, a minimal model provides an expression for the critical stress that helps rationalize our experimental results.


Assuntos
Adesão Celular , Técnicas Citológicas/instrumentação , Técnicas Citológicas/métodos , Animais , Aorta , Beclometasona , Bovinos , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Células Endoteliais/fisiologia , Microscopia/métodos , Microtecnologia , Pressão , Estresse Mecânico , Gravação em Vídeo
5.
J Math Biol ; 69(1): 213-42, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23774809

RESUMO

Organelles such as endosomes and the Golgi apparatus play a critical role in regulating signal transmission to the nucleus. Recent experiments have shown that appropriate positioning of these organelles within the intracellular space is critical for effective signal regulation. To understand the mechanism behind this observation, we consider a reaction-diffusion model of an intracellular signaling cascade and investigate the effect on the signaling of intracellular regulation in the form of a small release of phosphorylated signaling protein, kinase, and/or phosphatase. Variational analysis is applied to characterize the most effective regions for the localization of this intracellular regulation. The results demonstrate that signals reaching the nucleus are most effectively regulated by localizing the release of phosphorylated substrate protein and kinase near the nucleus. Phosphatase release, on the other hand, is nearly equally effective throughout the intracellular space. The effectiveness of the intracellular regulation is affected strongly by the characteristics of signal propagation through the cascade. For signals that are amplified as they propagate through the cascade, reactions in the upstream levels of the cascade exhibit much larger sensitivities to regulation by release of phosphorylated substrate protein and kinase than downstream reactions. On the other hand, for signals that decay through the cascade, downstream reactions exhibit larger sensitivity than upstream reactions. For regulation by phosphatase release, all reactions within the cascade show large sensitivity for amplified signals but lose this sensitivity for decaying signals. We use the analysis to develop a simple model of endosome-mediated regulation of cell signaling. The results demonstrate that signal regulation by the modeled endosome is most effective when the endosome is positioned in the vicinity of the nucleus. The present findings may explain at least in part why endosomes in many cell types localize near the nucleus.


Assuntos
Endossomos/fisiologia , Modelos Biológicos , Monoéster Fosfórico Hidrolases/fisiologia , Fosfotransferases/fisiologia , Sinais Direcionadores de Proteínas/fisiologia , Transdução de Sinais/fisiologia , Humanos , Fosforilação/fisiologia
6.
PLoS One ; 7(4): e35343, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514731

RESUMO

Transmission of mechanical stimuli through the actin cytoskeleton has been proposed as a mechanism for rapid long-distance mechanotransduction in cells; however, a quantitative understanding of the dynamics of this transmission and the physical factors governing it remains lacking. Two key features of the actin cytoskeleton are its viscoelastic nature and the presence of prestress due to actomyosin motor activity. We develop a model of mechanical signal transmission through prestressed viscoelastic actin stress fibers that directly connect the cell surface to the nucleus. The analysis considers both temporally stationary and oscillatory mechanical signals and accounts for cytosolic drag on the stress fibers. To elucidate the physical parameters that govern mechanical signal transmission, we initially focus on the highly simplified case of a single stress fiber. The results demonstrate that the dynamics of mechanical signal transmission depend on whether the applied force leads to transverse or axial motion of the stress fiber. For transverse motion, mechanical signal transmission is dominated by prestress while fiber elasticity has a negligible effect. Conversely, signal transmission for axial motion is mediated uniquely by elasticity due to the absence of a prestress restoring force. Mechanical signal transmission is significantly delayed by stress fiber material viscosity, while cytosolic damping becomes important only for longer stress fibers. Only transverse motion yields the rapid and long-distance mechanical signal transmission dynamics observed experimentally. For simple networks of stress fibers, mechanical signals are transmitted rapidly to the nucleus when the fibers are oriented largely orthogonal to the applied force, whereas the presence of fibers parallel to the applied force slows down mechanical signal transmission significantly. The present results suggest that cytoskeletal prestress mediates rapid mechanical signal transmission and allows temporally oscillatory signals in the physiological frequency range to travel a long distance without significant decay due to material viscosity and/or cytosolic drag.


Assuntos
Mecanotransdução Celular/fisiologia , Fibras de Estresse/metabolismo , Estresse Mecânico , Animais , Citoesqueleto/metabolismo , Humanos , Modelos Teóricos , Viscosidade
7.
Commun Integr Biol ; 5(6): 538-42, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23336020

RESUMO

Recent experiments have demonstrated very rapid long-distance transmission of mechanical forces within cells. Because the speed of this transmission greatly exceeds that of reaction-diffusion signaling, it has been conjectured that it occurs via the propagation of elastic waves through the actin stress fiber network. To explore the plausibility of this conjecture, we recently developed a model of small amplitude stress fiber deformations in prestressed viscoelastic stress fibers subjected to external forces. The model results demonstrated that rapid mechanical signal transmission is only possible when the external force is applied orthogonal to the stress fiber axis and that the dynamics of this transmission are governed by a balance between the prestress in the stress fiber and the stress fiber's material viscosity. The present study, which is a follow-up on our previous model, uses dimensional analysis to: (1) further evaluate the plausibility of the elastic wave conjecture and (2) obtain insight into mechanical signal transmission dynamics in simple stress fiber networks. We show that the elastic wave scenario is likely not the mechanism of rapid mechanical signal transmission in actin stress fibers due to the highly viscoelastic character of these fibers. Our analysis also demonstrates that the time constant characterizing mechanical stimulus transmission is strongly dependent on the topology of the stress fiber network, implying that network organization plays an important role in determining the dynamics of cellular responsiveness to mechanical stimulation.

8.
Phys Rev Lett ; 105(4): 044505, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20867850

RESUMO

Large-scale motions, important in turbulent shear flows, are frequently attributed to the interaction of structures at smaller scales. Here we show that, in a turbulent channel at Re{τ}≈550, large-scale motions can self-sustain even when smaller-scale structures populating the near-wall and logarithmic regions are artificially quenched. This large-scale self-sustained mechanism is not active in periodic boxes of width smaller than L{z}≈1.5h or length shorter than L{x}≈3h which correspond well to the most energetic large scales observed in the turbulent channel.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(3 Pt 2): 036321, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21230185

RESUMO

The optimal amplifications of small coherent perturbations within turbulent pipe flow are computed for Reynolds numbers up to one million. Three standard frameworks are considered: the optimal growth of an initial condition, the response to harmonic forcing and the Karhunen-Loève (proper orthogonal decomposition) analysis of the response to stochastic forcing. Similar to analyses of the turbulent plane channel flow and boundary layer, it is found that streaks elongated in the streamwise direction can be greatly amplified from quasistreamwise vortices, despite linear stability of the mean flow profile. The most responsive perturbations are streamwise uniform and, for sufficiently large Reynolds number, the most responsive azimuthal mode is of wave number m=1 . The response of this mode increases with the Reynolds number. A secondary peak, where m corresponds to azimuthal wavelengths λ_{θ}^{+}≈70-90 in wall units, also exists in the amplification of initial conditions and in premultiplied response curves for the forced problems. Direct numerical simulations at Re=5300 confirm that the forcing of m=1,2 and m=4 optimal structures results in the large response of coherent large-scale streaks. For moderate amplitudes of the forcing, low-speed streaks become narrower and more energetic, whereas high-speed streaks become more spread. It is further shown that drag reduction can be achieved by forcing steady large-scale structures, as anticipated from earlier investigations. Here the energy balance is calculated. At Re=5300 it is shown that, due to the small power required by the forcing of optimal structures, a net power saving of the order of 10% can be achieved following this approach, which could be relevant for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA