Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(19): 8531-8536, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38695157

RESUMO

Crystalline ceramics are candidate materials for the immobilization of radionuclides, particularly transuranics (such as U, Pu, and Am), arising from the nuclear fuel cycle. Due to the α-decay of transuranics and the associated recoil of the parent nucleus, crystalline materials may eventually be rendered amorphous through changes to the crystal lattice caused by these recoil events. Previous work has shown irradiation of titanate-based ceramics to change the local cation environment significantly, particularly in the case of Ti which was shown to change from 6- to 5-fold coordination. Here, this work expands the Ti-based study to investigate the behavior in Fe-based materials, using LaFeO3 as an example material. Irradiation was simulated by heavy ion implantation of the bulk LaFeO3 ceramic, with the resulting amorphous layer characterized with grazing angle X-ray absorption spectroscopy (GA-XAS). Insights into the Fe speciation changes exhibited by the amorphized surface layer were provided through quantitative analysis, including pre-edge analysis, and modeling of the extended X-ray absorption fine structure (EXAFS), of the GA-XAS data.

2.
Sci Rep ; 14(1): 1656, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238405

RESUMO

Mn-doped UO2 is under consideration for use as an accident tolerant nuclear fuel. We detail the synthesis of Mn-doped UO2 prepared via a wet co-precipitation method, which was refined to improve the yield of incorporated Mn. To verify the Mn-doped UO2 defect chemistry, X-ray absorption spectroscopy at the Mn K-edge was performed, in addition to X-ray diffraction, Raman spectroscopy and high-energy resolved fluorescence detection X-ray absorption near edge spectroscopy at the U M4-edge. It was established that Mn2+ directly substitutes for U4+ in the UO2 lattice, accompanied by oxygen vacancy (Ov) charge compensation. In contrast to other divalent-element doped UO2 materials, compelling evidence for U5+ in a charge compensating role was not found. This work furthers understanding of the structure and crystal chemistry of Mn-doped UO2, which could show potential advantages as a novel efficient advanced nuclear fuel.

3.
Sci Rep ; 13(1): 12776, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550380

RESUMO

ThTi2O6 derived compounds with the brannerite structure were designed, synthesised, and characterised with the aim of stabilising incorporation of U5+ or U6+, at dilute concentration. Appropriate charge compensation was targeted by co-substitution of Gd3+, Ca2+, Al3+, or Cr3+, on the Th or Ti site. U L3 edge X-ray Absorption Near Edge Spectroscopy (XANES) and High Energy Resolution Fluorescence Detected U M4 edge XANES evidenced U5+ as the major oxidation state in all compounds, with a minor fraction of U6+ (2-13%). The balance of X-ray and Raman spectroscopy data support uranate, rather than uranyl, as the dominant U6+ speciation in the reported brannerites. It is considered that the U6+ concentration was limited by unfavourable electrostatic repulsion arising from substitution in the octahedral Th or Ti sites, which share two or three edges, respectively, with neighbouring polyhedra in the brannerite structure.

4.
Sci Rep ; 13(1): 10328, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365272

RESUMO

Crystal chemical design principles were applied to synthesise novel U4+ dominant and titanium excess betafite phases Ca1.15(5)U0.56(4)Zr0.17(2)Ti2.19(2)O7 and Ca1.10(4)U0.68(4)Zr0.15(3)Ti2.12(2)O7, in high yield (85-95 wt%), and ceramic density reaching 99% of theoretical. Substitution of Ti on the A-site of the pyrochlore structure, in excess of full B-site occupancy, enabled the radius ratio (rA/rB = 1.69) to be tuned into the pyrochlore stability field, approximately 1.48 ≲ rA/rB ≲ 1.78, in contrast to the archetype composition CaUTi2O7 (rA/rB = 1.75). U L3-edge XANES and U 4f7/2 and U 4f5/2 XPS data evidenced U4+ as the dominant speciation, consistent with the determined chemical compositions. The new betafite phases, and further analysis reported herein, point to a wider family of actinide betafite pyrochlores that could be stabilised by application of the underlying crystal chemical principle applied here.

5.
Sci Rep ; 13(1): 9329, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291129

RESUMO

Indium (In) is a neutron absorbing additive that could feasibly be used to mitigate criticality in ceramic wasteforms containing Pu in the immobilised form, for which zirconolite (nominally CaZrTi2O7) is a candidate host phase. Herein, the solid solutions Ca1-xZr1-xIn2xTi2O7 (0.10 ≤ x ≤ 1.00; air synthesis) and Ca1-xUxZrTi2-2xIn2xO7 (x = 0.05, 0.10; air and argon synthesis) were investigated by conventional solid state sintering at a temperature of 1350 °C maintained for 20 h, with a view to characterise In3+ substitution behaviour in the zirconolite phase across the Ca2+, Zr4+ and Ti4+ sites. When targeting Ca1-xZr1-xIn2xTi2O7, single phase zirconolite-2M was formed at In concentrations of 0.10 ≤ x ≤ 0.20; beyond x ≥ 0.20, a number of secondary In-containing phases were stabilised. Zirconolite-2M remained a constituent of the phase assemblage up to a concentration of x = 0.80, albeit at relatively low concentration beyond x ≥ 0.40. It was not possible to synthesise the In2Ti2O7 end member compound using a solid state route. Analysis of the In K-edge XANES spectra in the single phase zirconolite-2M compounds confirmed that the In inventory was speciated as trivalent In3+, consistent with targeted oxidation state. However, fitting of the EXAFS region using the zirconolite-2M structural model was consistent with In3+ cations accommodated within the Ti4+ site, contrary to the targeted substitution scheme. When deploying U as a surrogate for immobilised Pu in the Ca1-xUxZrTi2-2xIn2xO7 solid solution, it was demonstrated that, for both x = 0.05 and 0.10, In3+ was successfully able to stabilise zirconolite-2M when U was distributed predominantly as both U4+ and average U5+, when synthesised under argon and air, respectively, determined by U L3-edge XANES analysis.


Assuntos
Índio , Espectroscopia por Absorção de Raios X , Argônio , Oxirredução
6.
ACS Sustain Chem Eng ; 11(8): 3194-3207, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36874194

RESUMO

The effect of ultrafine fly ash (UFA) and fly ash (FA) on the physical properties, phase assemblage, and microstructure of magnesium potassium phosphate cement (MKPC) was investigated. This study revealed that the UFA addition does not affect the calorimetry hydration peak associated with MKPC formation when normalized to the reactive components (MgO and KH2PO4). However, there is an indication that greater UFA additions lead to an increased reaction duration, suggesting the potential formation of secondary reaction products. The addition of a UFA:FA blend can delay the hydration and the setting time of MKPC, enhancing workability. MgKPO4·6H2O was the main crystalline phase observed in all systems; however, at low replacement levels in the UFA-only system (<30 wt %), Mg2KH(PO4)2·15H2O was also observed by XRD, SEM/EDS, TGA, and NMR (31P MAS, 1H-31P CP MAS). Detailed SEM/EDS and MAS NMR investigations (27Al, 29Si, 31P) demonstrated that the role of UFA and UFA:FA was mainly as a filler and diluent. Overall, the optimized formulation was determined to contain 40 wt % fly ash (10 wt % UFA and 30 wt % FA (U10F30)), which achieved the highest compressive strength and fluidity and produced a dense microstructure.

7.
Sci Rep ; 13(1): 3374, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854709

RESUMO

Portland cement-based grouts used for radioactive waste immobilisation contain a Ca- and Si-rich binder phase, known as calcium-silicate-hydrate (C-S-H). Depending on the blend of cement used, the Ca/Si ratio can vary considerably. A range of C-S-H minerals with Ca/Si ratios from 0.6 to 1.6 were synthesised and contacted with aqueous U(VI) at 0.5 mM and 10 mM concentrations. Solid-state 29Si MAS-NMR spectroscopy was applied to probe the Si coordination environment in U(VI)-contacted C-S-H minerals and, in conjunction with U LIII-edge X-ray absorption spectroscopy analysis, inferences of the fate of U(VI) in these systems were made. At moderate or high Ca/Si ratios, uranophane-type uranyl silicates or Ca-uranates dominated, while at the lowest Ca/Si ratios, the formation of a Ca-bearing uranyl silicate mineral, similar to haiweeite (Ca[(UO2)2Si5O12(OH)2]·3H2O) or Ca-bearing weeksite (Ca2(UO2)2Si6O15·10H2O) was identified. This study highlights the influence of Ca/Si ratio on uranyl sequestration, of interest in the development of post-closure safety models for U-bearing radioactive waste disposal.

8.
Inorg Chem ; 61(15): 5744-5756, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35377149

RESUMO

Zirconolite is considered to be a suitable wasteform material for the immobilization of Pu and other minor actinide species produced through advanced nuclear separations. Here, we present a comprehensive investigation of Dy3+ incorporation within the self-charge balancing zirconolite Ca1-xZr1-xDy2xTi2O7 solid solution, with the view to simulate trivalent minor actinide immobilization. Compositions in the substitution range 0.10 ≤ x ≤ 1.00 (Δx = 0.10) were fabricated by a conventional mixed oxide synthesis, with a two-step sintering regime at 1400 °C in air for 48 h. Three distinct coexisting phase fields were identified, with single-phase zirconolite-2M identified only for x = 0.10. A structural transformation from zirconolite-2M to zirconolite-4M occurred in the range 0.20 ≤ x ≤ 0.30, while a mixed-phase assemblage of zirconolite-4M and cubic pyrochlore was evident at Dy concentrations 0.40 ≤ x ≤ 0.50. Compositions for which x ≥ 0.60 were consistent with single-phase pyrochlore. The formation of zirconolite-4M and pyrochlore polytype phases, with increasing Dy content, was confirmed by high-resolution transmission electron microscopy, coupled with selected area electron diffraction. Analysis of the Dy L3-edge XANES region confirmed that Dy was present uniformly as Dy3+, remaining analogous to Am3+. Fitting of the EXAFS region was consistent with Dy3+ cations distributed across both Ca2+ and Zr4+ sites in both zirconolite-2M and 4M, in agreement with the targeted self-compensating substitution scheme, whereas Dy3+ was 8-fold coordinated in the pyrochlore structure. The observed phase fields were contextualized within the existing literature, demonstrating that phase transitions in CaZrTi2O7-REE3+Ti2O7 binary solid solutions are fundamentally controlled by the ratio of ionic radius of REE3+ cations.

9.
Inorg Chem ; 61(9): 4033-4045, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35187928

RESUMO

Isovalent nonmagnetic d10 and d0 B″ cations have proven to be a powerful tool for tuning the magnetic interactions between magnetic B' cations in A2B'B″O6 double perovskites. Tuning is facilitated by the changes in orbital hybridization that favor different superexchange pathways. This can produce alternative magnetic structures when B″ is d10 or d0. Furthermore, the competition generated by introducing mixtures of d10 and d0 cations can drive the material into the realms of exotic quantum magnetism. Here, Te6+ d10 was substituted by W6+ d0 in the hexagonal perovskite Ba2CuTeO6, which possesses a spin ladder geometry of Cu2+ cations, creating a Ba2CuTe1-xWxO6 solid solution (x = 0-0.3). We find W6+ is almost exclusively substituted for Te6+ on the corner-sharing site within the spin ladder, in preference to the face-sharing site between ladders. The site-selective doping directly tunes the intraladder, Jrung and Jleg, interactions. Modeling the magnetic susceptibility data shows the d0 orbitals modify the relative intraladder interaction strength (Jrung/Jleg) so the system changes from a spin ladder to isolated spin chains as W6+ increases. This further demonstrates the utility of d10 and d0 dopants as a tool for tuning magnetic interactions in a wide range of perovskites and perovskite-derived structures.

10.
J Synchrotron Radiat ; 29(Pt 1): 89-102, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985426

RESUMO

Portland cement based grouts used for radioactive waste immobilization contain high replacement levels of supplementary cementitious materials, including blast-furnace slag and fly ash. The minerals formed upon hydration of these cements may have capacity for binding actinide elements present in radioactive waste. In this work, the minerals ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and hydrotalcite (Mg6Al2(OH)16CO3·4H2O) were selected to investigate the importance of minor cement hydrate phases in sequestering and immobilizing UVI from radioactive waste streams. U LIII-edge X-ray absorption spectroscopy (XAS) was used to probe the UVI coordination environment in contact with these minerals. For the first time, solid-state 27Al magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy was applied to probe the Al coordination environment in these UVI-contacted minerals and make inferences on the UVI coordination, in conjunction with the X-ray spectroscopy analyses. The U LIII-edge XAS analysis of the UVI-contacted ettringite phases found them to be similar (>∼70%) to the uranyl oxyhydroxides present in a mixed becquerelite/metaschoepite mineral. Fitting of the EXAFS region, in combination with 27Al NMR analysis, indicated that a disordered Ca- or Al-bearing UVI secondary phase also formed. For the UVI-contacted hydrotalcite phases, the XAS and 27Al NMR data were interpreted as being similar to uranyl carbonate, that was likely Mg-containing.

11.
J Synchrotron Radiat ; 29(Pt 1): 276-279, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985445

RESUMO

HERMES, a graphical user interface software tool, is presented, for pre-processing X-ray absorption spectroscopy (XAS) data from laboratory Rowland circle spectrometers, to meet the data handling needs of a growing community of practice. HERMES enables laboratory XAS data to be displayed for quality assessment, merging of data sets, polynomial fitting of smoothly varying data, and correction of data to the true energy scale and for dead-time and leakage effects. The software is written in Java 15 programming language, and runs on major computer operating systems, with graphics implementation using the JFreeChart toolkit. HERMES is freely available and distributed under an open source licence.


Assuntos
Laboratórios , Interface Usuário-Computador , Algoritmos , Software , Espectroscopia por Absorção de Raios X
12.
Chemosphere ; 287(Pt 4): 132351, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34592215

RESUMO

Sulfate radical advance oxidation processes (SR-AOPs) have attracted a greater attention as a suitable alternative of the hydroxyl radical based advance oxidation process (HR-AOPs). In this study, for the first time we report liquid phase mineralization of nuclear grade cationic IRN-77 resin in Co2+/peroxymonosulfate (PMS) based SR-AOPs. After the dissolution of cationic IRN-77 resin, 30 volatile and 15 semi-volatile organic compounds were analyzed/detected using non-targeted GC-MS analysis. The optimal reaction parameters for the highest chemical oxygen demand (COD) removal (%) of IRN-77 resin were determined, and the initial pH, PMS dosage, and reaction temperature were found to be the most influential parameters for the resin degradation. We successfully achieved ∼90% COD removal (1000 mg/L; 1000 ppm) of dissolved spent resin for SR-AOPs by optimizing the reaction parameters as initial pH = 9, Co2+ = 4 mM (catalyst), PMS = 60 mM (as oxidant) at 60 °C temperature for 60 min reaction. The electron spin resonance spectroscopy (ESR) spectra confirmed the presence of SO4∙- and OH∙ as main reactive species in the Co2+/PMS resin system. In addition, Fourier transform infrared spectroscopy (FT-IR) analyses were used for structural characterization of solid and liquid phase resin samples. We believe that this work will offer a robust approach for the effective treatment of spent resin generated from nuclear industry.


Assuntos
Resinas de Troca Iônica , Peróxidos , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfatos
13.
Inorg Chem ; 60(23): 18112-18121, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34787401

RESUMO

The synthesis, characterization, and crystal structure of a novel (dominant) uranium(V) brannerite of composition U1.09(6)Ti1.29(3)Al0.71(3)O6 is reported, as determined from Rietveld analysis of the high-resolution neutron powder diffraction data. Examination of the UTi2-xAlxO6 system demonstrated the formation of brannerite-structured compounds with varying Al3+ and U5+ contents, from U0.93(6)Ti1.64(3)Al0.36(3)O6 to U0.89(6)Ti1.00(3)Al1.00(3)O6. Substitution of Al3+ for Ti4+, with U5+ charge compensation, resulted in near-linear changes in the b and c unit cell parameters and the overall unit cell volume, as expected from ionic radii considerations. The presence of U5+ as the dominant oxidation state in near-single-phase brannerite compositions was evidenced by complementary laboratory U L3-edge and high-energy-resolution fluorescence-detected U M4-edge X-ray absorption near-edge spectroscopy. No brannerite phase was found for compositions with Al3+/Ti4+ > 1, which would require a U6+ contribution for charge compensation. These data expand the crystal chemistry of uranium brannerites to the stabilization of dominant uranium(V) brannerites by the substitution of trivalent cations, such as Al3+, on the Ti4+ site.

14.
J Synchrotron Radiat ; 28(Pt 6): 1672-1683, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738921

RESUMO

Uranium speciation and redox behaviour is of critical importance in the nuclear fuel cycle. X-ray absorption near-edge spectroscopy (XANES) is commonly used to probe the oxidation state and speciation of uranium, and other elements, at the macroscopic and microscopic scale, within nuclear materials. Two-dimensional (2D) speciation maps, derived from microfocus X-ray fluorescence and XANES data, provide essential information on the spatial variation and gradients of the oxidation state of redox active elements such as uranium. In the present work, we elaborate and evaluate approaches to the construction of 2D speciation maps, in an effort to maximize sensitivity to the U oxidation state at the U L3-edge, applied to a suite of synthetic Chernobyl lava specimens. Our analysis shows that calibration of speciation maps can be improved by determination of the normalized X-ray absorption at excitation energies selected to maximize oxidation state contrast. The maps are calibrated to the normalized absorption of U L3 XANES spectra of relevant reference compounds, modelled using a combination of arctangent and pseudo-Voigt functions (to represent the photoelectric absorption and multiple-scattering contributions). We validate this approach by microfocus X-ray diffraction and XANES analysis of points of interest, which afford average U oxidation states in excellent agreement with those estimated from the chemical state maps. This simple and easy-to-implement approach is general and transferrable, and will assist in the future analysis of real lava-like fuel-containing materials to understand their environmental degradation, which is a source of radioactive dust production within the Chernobyl shelter.


Assuntos
Acidente Nuclear de Chernobyl , Urânio , Síncrotrons , Espectroscopia por Absorção de Raios X , Raios X
15.
Inorg Chem ; 60(18): 14105-14115, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34469139

RESUMO

The photocatalytic and dielectric behaviors of Aurivillius oxyfluorides such as Bi2TiO4F2 depend sensitively on their crystal structure and symmetry but these are not fully understood. Our experimental work combined with symmetry analysis demonstrates the factors that influence anion order and how this might be tuned to break inversion symmetry. We explore an experimental approach to explore anion order, which combines Rietveld analysis with strain analysis.

16.
J Hazard Mater ; 413: 125250, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33581672

RESUMO

Ion exchange materials are used widely for the removal of radionuclides from contaminated water at nuclear licensed sites, during normal operating procedures, decommissioning and in accident clean-up, such as the ongoing recovery operation at the Fukushima Daiichi nuclear power plant. Framework silicate inorganic ion exchange materials, such as chabazite ((Na0.14K1.03Ca1.00Mg0.17)[Al3.36Si8.53O24]•9.7H2O), have shown particular selectivity towards 137Cs uptake, but their safe storage poses a number challenges requiring conditioning into passively safe waste packages of minimal volume. We demonstrate the transformation of Cs-exchanged chabazite into a glass-ceramic wasteform by hot isostatic pressing to produce a durable consolidated monolith. The application of heat and pressure resulted in the collapse of the chabazite framework, forming crystalline Cs-substituted leucite (Cs0.15(3)K0.57(4)Al0.90(4)Si2.24(5)O6) incorporated within a K2O-CaO-MgO-Al2O3-SiO2 glass. The Cs partitioned preferentially into the Cs/K-feldspar which incorporated ~77% of the Cs2O inventory. Analysis of the chemical durability of the glass-ceramic wasteform revealed that the Cs release rates were comparable or lower than those reported for vitrified high level and intermediate level wastes. Overall, hot isostatic pressing was demonstrated to be an effective processing technology for conditioning spent inorganic ion exchange materials by yielding durable and passively safe wasteforms.

17.
Inorg Chem ; 60(4): 2553-2562, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33491452

RESUMO

Low-temperature soft chemical synthesis routes to transition-metal nitrides are of interest as an alternative to conventional high-temperature ammonolysis reactions involving large volumes of chemotoxic NH3 gas. One such method is the reaction between metal oxides and NaNH2 at ca. 200 °C to yield the counterpart nitrides; however, there remains uncertainty regarding the reaction mechanism and product phase assemblage (in particular, noncrystalline components). Here, we extend the chemical tool box and mechanistic understanding of such reactions, demonstrating the nitridation of Fe3O4 by reaction with NaNH2 at 170-190 °C, via a pseudomorphic reaction. The more reduced Fe3O4 precursor enabled nitride formation at lower temperatures than the previously reported equivalent reaction with Fe2O3. The product phase assemblage, characterized by X-ray diffraction, thermogravimetric analysis, and 57Fe Mössbauer spectroscopy, comprised 49-59 mol % ε-Fe2+xN, accompanied by 29-39 mol % FeO1-xNx and 8-14 mol % γ″-FeN. The oxynitride phase was apparently noncrystalline in the recovered product but could be crystallized by heating at 180 °C. Although synthesis of transition-metal nitrides is achieved by reaction of the counterpart oxide with NaNH2, it is evident from this investigation that the product phase assemblage may be complex, which could prove a limitation if the objective is to produce a single-phase product with well-defined electrical, magnetic, or other physical properties for applications. However, the significant yield of the FeO1-xNx oxynitride phase identified in this study opens the possibility for the synthesis of metastable oxynitride phases in high yield, by reaction of a metal oxide substrate with NaNH2, with either careful control of H2O concentration in the system or postsynthetic hydrolysis and crystallization.

18.
Forensic Sci Int ; 319: 110678, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33444895

RESUMO

A digital colour image may be composed of hundreds of thousands of pixels, every pixel exhibiting a single colour. Each colour can be described as a combination of red, green and blue (RGB) components, of discrete values between 0-255. The RGB data contained within the pixels of an image could, therefore, be used to quantitatively establish the colour of nuclear material powders from digital images, particularly for use in nuclear forensics applications, where there is a need for consistent, objective analysis. This paper sets out a standard method for the photography and analysis of digital images of uranium oxide powder, for the objective quantification of colour by mean RGB values. Eight heat treated (up to 550°C) powder samples of studtite ([(UO2)(O2)(H2O)2]·2H2O) were photographed at room temperature and analysed by the RGB method. Hue, saturation and value of the coloured samples were obtained alongside mean RGB values, both of which were used to successfully determine the heating temperatures of unknown specimens of studtite.

19.
RSC Adv ; 11(41): 25179-25186, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35478893

RESUMO

In this work, we perform a theoretical investigation of the actinide and lanthanide solid solution mechanisms of zirconolite-2M, prototypically CaZrTi2O7, as a candidate immobilisation matrix for plutonium. Solid solution energies were calculated using static atomistic simulations by means of the General Utility Lattice Program, for formulations of relevance to ceramic wasteform deployment, with substitution on the Ca2+ and Zr4+ sites by Ce4+, Pu4+, Th4+, and U4+, and appropriate charge balance by substitution of Al3+ or Fe3+ on Ti4+ sites. In simple solid solutions involving substitution on the Zr4+ site, we found that whereas substitution of Ce4+, U4+ and Pu4+ were energetically favoured, substitution of Th4+ was not energetically favoured. For more complex solid solutions involving Ce4+, Pu4+, Th4+, and U4+ substitution on the Ca2+ site, we found the most energetically favoured scheme involved co-substitution of Al3+ or Fe3+ on the five-fold co-ordinate Ti4+ site in the zirconolite-2M structure. Comparison of these computational data with experimental evidence, where available, demonstrated broad agreement. Consequently, this study provides useful insight into formulation design and the efficacy of Ce4+, U4+ and Th4+ as Pu4+ surrogates in zirconolite-2M ceramic wasteforms for plutonium disposition.

20.
J Hazard Mater ; 401: 123764, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33113733

RESUMO

Materials from GeoMelt® In-Container Vitrification (ICV)™ of simulant UK nuclear wastes were characterised to understand the partitioning of elements, including inactive surrogates for radionuclide species of interest, within the heterogeneous products. Aqueous durability analysis was performed to assess the potential disposability of the resulting wasteforms. The vitrification trial aimed to immobilise a variety of simulant legacy waste streams representative of decommissioning operations in the UK, including plutonium contaminated material, Magnox sludges and ion-exchange materials, which were vitrified upon the addition of glass forming additives. Two trials with different wastes were characterised, with the resultant vitreous wasteforms comprising olivine and pyroxene crystalline minerals within glassy matrices. Plutonium surrogate elements were immobilised within the glassy fraction rather than partitioning into crystalline phases. All vitrified products exhibited comparable or improved durability to existing UK high level waste vitrified nuclear wasteforms over a 28 day period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA