RESUMO
Introduction: With over 360 blood group antigens in systems recognized, there are antigens, such as RhD, which demonstrate a quantitative reduction in antigen expression due to nucleotide variants in the non-coding region of the gene that result in aberrant splicing or a regulatory mechanism. This study aimed to evaluate bioinformatically predicted GATA1-binding regulatory motifs in the RHD gene for samples presenting with weak or apparently negative RhD antigen expression but showing normal RHD exons. Methods: Publicly available open chromatin region data were overlayed with GATA1 motif candidates in RHD. Genomic DNA from weak D, Del or D- samples with normal RHD exons (n = 13) was used to confirm RHD zygosity by quantitative PCR. Then, RHD promoter, intron 1, and intron 2 regions were amplified for Sanger sequencing to detect potential disruptions in the GATA1 motif candidates. Electrophoretic mobility shift assay (EMSA) was performed to assess GATA1-binding. Luciferase assays were used to assess transcriptional activity. Results: Bioinformatic analysis identified five of six GATA1 motif candidates in the promoter, intron 1 and intron 2 for investigation in the samples. Luciferase assays showed an enhancement in transcription for GATA1 motifs in intron 1 and for intron 2 only when the R 2 haplotype variant (rs675072G>A) was present. GATA1 motifs were intact in 12 of 13 samples. For one sample with a Del phenotype, a novel RHD c.1-110A>C variant disrupted the GATA1 motif in the promoter which was supported by a lack of a GATA1 supershift in the EMSA and 73% transcriptional activity in the luciferase assay. Two samples were D+/D- chimeras. Conclusion: The bioinformatic predictions enabled the identification of a novel DEL allele, RHD c.1-110A>C, which disrupted the GATA1 motif in the proximal promoter. Although the majority of the samples investigated here remain unexplained, we provide GATA1 targets which may benefit future RHD regulatory investigations.
RESUMO
KLF transcription factor 1 (KLF1) and GATA binding protein 1 (GATA1) are transcription factors (TFs) that initiate and regulate transcription of the genes involved in erythropoiesis. These TFs possess DNA-binding domains that recognize specific nucleotide sequences in genes, to which they bind and regulate transcription. Variants in the genes that encode either KLF1 or GATA1 can result in a range of hematologic phenotypes-from benign to severe forms of thrombocytopenia and anemia; they can also weaken the expression of blood group antigens. The Lutheran (LU) blood group system is susceptible to TF gene variations, particularly KLF1 variants. Individuals heterozygous for KLF1 gene variants show reduced Lutheran antigens on red blood cells that are not usually detected by routine hemagglutination methods. This reduced antigen expression is referred to as the In(Lu) phenotype. For accurate blood typing, it is important to distinguish between the In(Lu) phenotype, which has very weak antigen expression, and the true Lunull phenotype, which has no antigen expression. The International Society of Blood Transfusion blood group allele database registers KLF1 and GATA1 variants associated with modified Lutheran expression. Here, we review KLF1 and recent novel gene variants defined through investigating blood group phenotype and genotype discrepancies or, for one report, investigating cases with unexplained chronic anemia. In addition, we include a review of the GATA1 TF, including a case report describing the second GATA1 variant associated with a serologic Lu(a-b-) phenotype. Finally, we review both past and recent reports on variations in the DNA sequence motifs on the blood group genes that disrupt the binding of the GATA1 TF and either remove or reduce erythroid antigen expression. This review highlights the diversity and complexity of the transcription process itself and the need to consider these factors as an added component for accurate blood group phenotyping.
Assuntos
Antígenos de Grupos Sanguíneos , Eritrócitos , Fator de Transcrição GATA1 , Fatores de Transcrição Kruppel-Like , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fator de Transcrição GATA1/genética , Eritrócitos/metabolismo , Eritrócitos/imunologia , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/imunologia , Sistema do Grupo Sanguíneo Lutheran/genética , Regulação da Expressão Gênica , Eritropoese/genéticaRESUMO
BACKGROUND: We report an obstetric case involving an RhD-positive woman who had developed a red blood cell (RBC) antibody that was not detected until after delivery of a newborn, who presented with a positive direct antiglobulin test result. Immunohematology studies suggested that the maternal antibody was directed against a low-prevalence antigen on the paternal and newborn RBCs. RESULTS: Comprehensive blood group profiling by targeted exome sequencing revealed a novel nonsynonymous single nucleotide variant (SNV) RHCE c.486C>G (GenBank MZ326705) on the RHCE*Ce allele, for both the father and newborn. A subsequent genomic-based study to profile blood groups in an Indigenous Australian population revealed the same SNV in 2 of 247 individuals. Serology testing showed that the maternal antibody reacted specifically with RBCs from these two individuals. DISCUSSION: The maternal antibody was directed against a novel antigen in the Rh blood group system arising from an RHCE c.486C>G variant on the RHCE*Ce allele linked to RHD*01. The variant predicts a p.Asn162Lys change on the RhCE protein and has been registered as the 56th antigen in the Rh system, ISBT RH 004063. CONCLUSION: This antibody was of clinical significance, resulting in a mild to moderate hemolytic disease of the fetus and newborn (HDFN). In the past, the cause of such HDFN cases may have remained unresolved. Genomic sequencing combined with population studies now assists in resolving such cases. Further population studies have potential to inform the need to design population-specific red cell antibody typing panels for antibody screening in the Australian population.
Assuntos
Eritroblastose Fetal , Sistema do Grupo Sanguíneo Rh-Hr , Humanos , Sistema do Grupo Sanguíneo Rh-Hr/genética , Sistema do Grupo Sanguíneo Rh-Hr/imunologia , Feminino , Recém-Nascido , Eritroblastose Fetal/genética , Eritroblastose Fetal/imunologia , Gravidez , Masculino , Adulto , Isoanticorpos/sangue , Isoanticorpos/imunologia , Alelos , Eritrócitos/imunologia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: Hematological disorders are often treated with blood transfusions. Many blood group antigens and variants are population-specific, and for patients with rare blood types, extensive donor screening is required to find suitable matches for transfusion. There is a scarcity of knowledge regarding blood group variants in Aboriginal Australian populations, despite a higher need for transfusion due to the higher prevalence of renal diseases and anaemia. MATERIALS AND METHODS: In this study, we applied next-generation sequencing and analysis to 245 samples obtained from Aboriginal Australians from South-East Queensland, to predict antigen phenotypes for 36 blood group systems. RESULTS: We report potential weak antigens in blood group systems RH, FY and JR that have potential clinical implications in transfusion and pregnancy settings. These include partial DIII type 4, weak D type 33, and Del RHD (IVS2-2delA). The rare Rh phenotypes D+ C+ E+ c- e+ and D+ C+ E+ c+ e- were also detected. DISCUSSION: The comprehensive analyses of blood group genetic variant profiles identified in this study will provide insight and an opportunity to improve Aboriginal health by aiding in the identification of appropriate blood products for population-specific transfusion needs.
RESUMO
BACKGROUND: Rh is one of the most important blood group systems in transfusion medicine. The two homologous genes RHD and RHCE are located on chromosome 1p36.11 and encode for RhD and RhCE proteins, respectively. Complex genetic polymorphisms result in a variety of antigenic expression of D, C, E, c, and e. Here, we describe a case of a young female with D-- who developed anti-Rh17 secondary to blood transfusion and had signs of haemolytic disease of the fetus and fetal death in five consecutive pregnancies. CASE DESCRIPTION: EDTA-whole blood samples were collected from the patient, husband and eight siblings for blood grouping, phenotyping, and red cell antibody screening. Extracted DNA was genotyped by SNP-microarray and massively parallel sequencing (MPS) with targeted blood group exome sequencing. Copy number variation analysis was performed to identify structural variants in the RHD and RHCE. Routine phenotyping showed all family members were D+. The patient's red blood cells were C-E-c-e-, Rh17- and Rh46- and had anti-Rh17 and anti-e antibodies. MPS showed the patient carried a wildtype RHD sequence and homozygous for RHCE (1)-D (2-9)-CE (10) hybrid gene predicted to express a D-- phenotype. CONCLUSIONS: Our patient had a rare D-- phenotype and confirmed to have RHCE/RHD hybrid gene with replacement of 2-9 exons of RHCE by RHD sequences. Unfortunately, our patient developed anti-Rh17 and anti-e antibodies due to blood transfusion and suffered fetal demise in her very first pregnancy. The adverse outcomes could have been prevented by active prenatal management.
Assuntos
Aborto Habitual , Antígenos de Grupos Sanguíneos , Gravidez , Humanos , Feminino , Sistema do Grupo Sanguíneo Rh-Hr/genética , Variações do Número de Cópias de DNA , Genótipo , Antígenos de Grupos Sanguíneos/genética , Fenótipo , Aborto Habitual/genética , AlelosRESUMO
Non-invasive prenatal tests (NIPT) to predict fetal red cell or platelet antigen status for alloimmunised women are provided for select antigens. This study reports on massively parallel sequencing (MPS) using a red cell and platelet probe panel targeting multiple nucleotide variants, plus individual identification single nucleotide polymorphisms (IISNPs). Maternal blood samples were provided from 33 alloimmunised cases, including seven with two red cell antibodies. Cell-free and genomic DNA was sequenced using targeted MPS and bioinformatically analysed using low-frequency variant detection. The resulting maternal genomic DNA allele frequency was subtracted from the cell-free DNA counterpart. Outcomes were matched against validated phenotyping/genotyping methods, where available. A 2.5% subtractive allele frequency threshold was set after comparing MPS predictions for K, RhC/c, RhE/e and Fya /Fyb against expected outcomes. This threshold was used for subsequent predictions, including HPA-15a, Jka /Jkb , Kpa /Kpb and Lua . MPS outcomes were 97.2% concordant with validated methods; one RhC case was discordantly negative and lacked IISNPs. IISNPs were informative for 30/33 cases as controls. NIPT MPS is feasible for fetal blood group genotyping and covers multiple blood groups and control targets in a single test. Noting caution for the Rh system, this has the potential to provide a personalised service for alloimmunised women.
Assuntos
Antígenos de Plaquetas Humanas , Antígenos de Grupos Sanguíneos , Gravidez , Humanos , Feminino , Antígenos de Grupos Sanguíneos/genética , Sangue Fetal , Genótipo , Estudos de Viabilidade , Diagnóstico Pré-Natal/métodos , DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
BACKGROUND AND OBJECTIVES: A newborn presented with jaundice in Thailand. The cord red cells tested positive by direct antiglobulin test (DAT) for an unknown maternal red cell antibody. Initial blood group sequencing suggested that the infant carried a novel variant RHAG c.140T>C, responsible for a low-prevalence antigen in the RHAG blood group system (ISBT 030). We report here on testing of samples from the infant's parents and older sibling to define a new antigen in the RHAG system. MATERIALS AND METHODS: Massive parallel sequencing (MPS) using a custom-designed panel was performed on all four family members. Extended serological testing was also performed to determine whether family members with the same variant as the infant showed reactivity with the antibody in the maternal plasma. RESULTS: We identified a novel single nucleotide variant (SNV) (RHAG c.140T>C, p.[Phe47Ser]) in samples from three of the four family members tested (the infant, the older sibling and the father). The variant was not detected in the mother's sample. Maternal plasma showed positive agglutination with all family members tested; however, when tested with routine panel cells, no reactivity was observed. CONCLUSION: This case study showed that the presence of the novel variant (RHAG c.140T>C), encoding a p.(Phe47Ser) change in the RhAG glycoprotein, was the apparent cause of incompatibility between maternal plasma and that of red cells from the proband, father and older sibling of the proband. We propose this variant to be a new low-prevalence antigen in the RHAG blood group system.
Assuntos
Antígenos de Grupos Sanguíneos , Doenças Hematológicas , Recém-Nascido , Humanos , Proteínas Sanguíneas , Antígenos de Grupos Sanguíneos/genética , Eritrócitos , Hemólise , Feto , Sistema do Grupo Sanguíneo Rh-Hr/genética , Glicoproteínas de MembranaRESUMO
BACKGROUND: Young adults form the majority of first-time blood donors to Australian Red Cross Lifeblood. However, these donors pose unique challenges for donor safety. Young blood donors, who are still undergoing neurological and physical development, have been found to have lower iron stores, and have higher risks of iron deficiency anaemia when compared to older adults and non-donors. Identifying young donors with higher iron stores may improve donor health and experience, increase donor retention, and reduce the burden on product donation. In addition, these measures could be used to individualise donation frequency. MATERIALS AND METHODS: Stored DNA samples from young male donors (18-25 years; No.=47) were sequenced using a custom panel of genes identified in the literature to be associated with iron homeostasis. The custom sequencing panel used in this study identified and reported variants to human genome version 19 (Hg19). RESULTS: 82 gene variants were analysed. Only one of which, rs8177181, was found to have a statistically significant (p<0.05) association with plasma ferritin level. Heterozygous alleles of this Transferrin gene variant, rs8177181T>A, significantly predicted a positive effect on ferritin levels (p=0.03). DISCUSSION: This study identified gene variants involved in iron homeostasis using a custom sequencing panel and analysed their association with ferritin levels in a young male blood donor population. Additional studies of factors associated with iron deficiency in blood donors are required if a goal of personalised blood donation protocols is to be achieved.
Assuntos
Doadores de Sangue , Ferro , Adulto Jovem , Masculino , Humanos , Idoso , Ferritinas , Sequenciamento de Nucleotídeos em Larga Escala , Austrália , HemoglobinasRESUMO
BACKGROUND AND OBJECTIVES: Under the ISBT, the Working Party (WP) for Red Cell Immunogenetics and Blood Group Terminology is charged with ratifying blood group systems, antigens and alleles. This report presents the outcomes from four WP business meetings, one located in Basel in 2019 and three held as virtual meetings during the COVID-19 pandemic in 2020 and 2021. MATERIALS AND METHODS: As in previous meetings, matters pertaining to blood group antigen nomenclature were discussed. New blood group systems and antigens were approved and named according to the serologic, genetic, biochemical and cell biological evidence presented. RESULTS: Seven new blood group systems, KANNO (defined numerically as ISBT 037), SID (038), CTL2 (039), PEL (040), MAM (041), EMM (042) and ABCC1 (043) were ratified. Two (039 and 043) were de novo discoveries, and the remainder comprised reported antigens where the causal genes were previously unknown. A further 15 blood group antigens were added to the existing blood group systems: MNS (002), RH (004), LU (005), DI (010), SC (013), GE (020), KN (022), JMH (026) and RHAG (030). CONCLUSION: The ISBT now recognizes 378 antigens, of which 345 are clustered within 43 blood group systems while 33 still have an unknown genetic basis. The ongoing discovery of new blood group systems and antigens underscores the diverse and complex biology of the red cell membrane. The WP continues to update the blood group antigen tables and the allele nomenclature tables. These can be found on the ISBT website (http://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology/).
Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Eritrócitos , Humanos , Antígenos de Grupos Sanguíneos/genética , Transfusão de Sangue , Imunogenética , Pandemias , Eritrócitos/imunologiaRESUMO
BACKGROUND: Low-prevalence antigen sD (MNS23) is encoded by GYPB c.173C > G. Hemolytic disease of the fetus and newborn (HDFN) due to anti-sD is rare. A mother delivered a newborn whose red blood cells (RBCs) were DAT-positive and was later diagnosed with HDFN. Serum from the mother was incompatible with the father's RBCs and was used to screen 184 Thai blood donors. This study aimed to investigate the cause of HDFN in a Thai family and determine the prevalence of sD in Thai blood donors. MATERIALS AND METHODS: Three family members and four blood donors were investigated in the study. Massively Parallel Sequencing (MPS) was used for genotyping. Standard hemagglutination techniques were used in titration studies, phenotyping, and enzyme/chemical studies. Anti-s, anti-Mia , anti-JENU, and anti-sD reagents were used in serological investigations. RESULTS: The mother was GYP*Mur/Mur. The father and the four donors were GYPB*s/sD predicting S - s + sD +. The baby was GYP*Mur/sD and his RBCs were Mia +, s + w with anti-s (P3BER) and JENU+w . RBCs from two GYPB*sD -positive blood donors reacted with anti-sD (Dreyer). Proteolytic enzyme α-chymotrypsin-treated sD + cells did not react with anti-sD (Wat) produced by the GP.Mur/Mur mother but reacted with the original anti-sD (Dreyer). DISCUSSION: This is the first report of HDFN due to anti-sD in the Asian population. The genotype frequency for GYPB*sD in a selected Thai blood donor population is 2.2% (4/184). Anti-sD should be considered in mothers with Southeast Asian or East Asian background when antibody identification is unresolved in pregnancies affected by HDFN.
Assuntos
Eritroblastose Fetal , Sistema do Grupo Sanguíneo MNSs , Doadores de Sangue , Eritroblastose Fetal/epidemiologia , Feminino , Feto , Glicoforinas/genética , Humanos , Recém-Nascido , Sistema do Grupo Sanguíneo MNSs/genética , Mães , Peptídeo Hidrolases/genética , Fenótipo , Gravidez , Prevalência , Tailândia/epidemiologiaRESUMO
There have been no comprehensive studies of a full range of blood group polymorphisms within the Australian population. This problem is compounded by the absence of any databases carrying genomic information on chronically transfused patients and low frequency blood group antigens in Australia. Here, we use RBCeq, a web server-based blood group genotyping software, to identify unique blood group variants among Australians and compare the variation detected vs global data. Whole-genome sequencing data were analyzed for 2796 healthy older Australians from the Medical Genome Reference Bank and compared with data from 1000 Genomes phase 3 (1KGP3) databases comprising 661 African, 347 American, 503 European, 504 East Asian, and 489 South Asian participants. There were 661 rare variants detected in this Australian sample population, including 9 variants that had clinical associations. Notably, we identified 80 variants that were computationally predicted to be novel and deleterious. No clinically significant rare or novel variants were found associated with the genetically complex ABO blood group system. For the Rh blood group system, 2 novel and 15 rare variants were found. Our detailed blood group profiling results provide a starting point for the creation of an Australian blood group variant database.
Assuntos
Antígenos de Grupos Sanguíneos , Povo Asiático , Austrália/epidemiologia , Antígenos de Grupos Sanguíneos/genética , Humanos , Polimorfismo de Nucleotídeo Único , Estados Unidos , Sequenciamento Completo do Genoma/métodosRESUMO
BACKGROUND AND OBJECTIVES: The LW gene encodes the LW glycoprotein that carries the antigens of the LW blood group system. LW antigens are distinct from D antigen, however, they are phenotypically related and anti-LW antibodies are often mistaken as anti-D. An antibody was detected in an Australian patient of Aboriginal descent who consistently typed as LW(a+b-). This study aimed to describe the antibody recognizing a high-prevalence antigen on the LW glycoprotein. STUDY DESIGN AND METHODS: Samples from the patient and her four siblings were investigated. DNA was genotyped by single nucleotide polymorphism (SNP)-microarray and massively parallel sequencing (MPS) platforms. Red blood cells (RBCs) were phenotyped using standard haemagglutination techniques. Antibody investigations were performed using a panel of phenotyped RBCs from adults and cord blood cells. RESULTS: SNP-microarray and MPS genotyped all family members as LW*A/A, (c.299A), predicting LW(a+b-). In addition, a novel LW*A c.309C>A single nucleotide variant was detected in all family members. The patient and one of her siblings (M4) were LW c.309C>A homozygous. Antibody from the patient reacted positive to all reagent panel RBCs and cord blood cells but negative with RBCs from LW(a-b-), Rhnull and sibling M4. Antibody failed to react with RBCs treated with dithiothreitol. CONCLUSION: Antibody detected in the patient recognized a novel high-prevalence antigen, LWEM, in the LW blood group system. LWEM-negative patients who developed anti-LWEM can be safely transfused with D+ RBCs, however, D- is preferred. Accurate antibody identification can help better manage allocation of blood products especially when D- RBCs are in short supply.
Assuntos
Antígenos de Grupos Sanguíneos , Isoanticorpos , Adulto , Austrália/epidemiologia , Antígenos de Grupos Sanguíneos/genética , Feminino , Hemaglutinação , Humanos , Prevalência , Sistema do Grupo Sanguíneo Rh-Hr/genéticaAssuntos
Sistema ABO de Grupos Sanguíneos , Sistema ABO de Grupos Sanguíneos/genética , Alelos , Éxons , Genótipo , Humanos , FenótipoRESUMO
BACKGROUND: While blood transfusion is an essential cornerstone of hematological care, patients requiring repetitive transfusion remain at persistent risk of alloimmunization due to the diversity of human blood group polymorphisms. Despite the promise, user friendly methods to accurately identify blood types from next-generation sequencing data are currently lacking. To address this unmet need, we have developed RBCeq, a novel genetic blood typing algorithm to accurately identify 36 blood group systems. METHODS: RBCeq can predict complex blood groups such as RH, and ABO that require identification of small indels and copy number variants. RBCeq also reports clinically significant, rare, and novel variants with potential clinical relevance that may lead to the identification of novel blood group alleles. FINDINGS: The RBCeq algorithm demonstrated 99·07% concordance when validated on 402 samples which included 29 antigens with serology and 9 antigens with SNP-array validation in 14 blood group systems and 59 antigens validation on manual predicted phenotype from variant call files. We have also developed a user-friendly web server that generates detailed blood typing reports with advanced visualization (https://www.rbceq.org/). INTERPRETATION: RBCeq will assist blood banks and immunohematology laboratories by overcoming existing methodological limitations like scalability, reproducibility, and accuracy when genotyping and phenotyping in multi-ethnic populations. This Amazon Web Services (AWS) cloud based platform has the potential to reduce pre-transfusion testing time and to increase sample processing throughput, ultimately improving quality of patient care. FUNDING: This work was supported in part by Advance Queensland Research Fellowship, MRFF Genomics Health Futures Mission (76,757), and the Australian Red Cross LifeBlood. The Australian governments fund the Australian Red Cross Lifeblood for the provision of blood, blood products and services to the Australian community.
Assuntos
Antígenos de Grupos Sanguíneos , Tipagem e Reações Cruzadas Sanguíneas , Algoritmos , Austrália , Antígenos de Grupos Sanguíneos/genética , Genótipo , Humanos , Reprodutibilidade dos TestesRESUMO
Maternal alloimmunisation against red blood cell antigens can cause haemolytic disease of the fetus and newborn (HDFN). Although most frequently caused by anti-D, since the implementation of rhesus D (RhD) immunoglobulin prophylaxis, other alloantibodies have become more prevalent in HDFN. Recent advances in non-invasive prenatal testing (NIPT) have allowed early prediction of HDFN risk in alloimmunised pregnancies and allow clinicians to focus health resources on those pregnancies that require intervention. This article aims to provide updates on the current status of NIPT in Australia as both a diagnostic and screening tool in pregnancy.
Assuntos
Eritroblastose Fetal , Sistema do Grupo Sanguíneo Rh-Hr , Tipagem e Reações Cruzadas Sanguíneas , Eritroblastose Fetal/diagnóstico , Eritroblastose Fetal/prevenção & controle , Feminino , Feto , Humanos , Gravidez , Cuidado Pré-Natal , Diagnóstico Pré-NatalRESUMO
BACKGROUND AND OBJECTIVES: Non-invasive assays for predicting foetal blood group status in pregnancy serve as valuable clinical tools in the management of pregnancies at risk of detrimental consequences due to blood group antigen incompatibility. To secure clinical applicability, assays for non-invasive prenatal testing of foetal blood groups need to follow strict rules for validation and quality assurance. Here, we present a multi-national position paper with specific recommendations for validation and quality assurance for such assays and discuss their risk classification according to EU regulations. MATERIALS AND METHODS: We reviewed the literature covering validation for in-vitro diagnostic (IVD) assays in general and for non-invasive foetal RHD genotyping in particular. Recommendations were based on the result of discussions between co-authors. RESULTS: In relation to Annex VIII of the In-Vitro-Diagnostic Medical Device Regulation 2017/746 of the European Parliament and the Council, assays for non-invasive prenatal testing of foetal blood groups are risk class D devices. In our opinion, screening for targeted anti-D prophylaxis for non-immunized RhD negative women should be placed under risk class C. To ensure high quality of non-invasive foetal blood group assays within and beyond the European Union, we present specific recommendations for validation and quality assurance in terms of analytical detection limit, range and linearity, precision, robustness, pre-analytics and use of controls in routine testing. With respect to immunized women, different requirements for validation and IVD risk classification are discussed. CONCLUSION: These recommendations should be followed to ensure appropriate assay performance and applicability for clinical use of both commercial and in-house assays.
Assuntos
Antígenos de Grupos Sanguíneos , Antígenos de Grupos Sanguíneos/genética , Feminino , Sangue Fetal , Feto , Genótipo , Humanos , Gravidez , Diagnóstico Pré-Natal , Sistema do Grupo Sanguíneo Rh-Hr/genéticaRESUMO
BACKGROUND: RhD-immunoglobulin (RhIg) prevents anti-D alloimmunisation in D-negative pregnant women when the fetus is D-positive, reducing the incidence of haemolytic disease of the fetus and newborn. Manufacturing RhIg is reliant on the limited supply of plasma donations with anti-D antibodies. Monoclonal antibody (mAb) development platforms such as phage display, require blood samples to be collected from anti-D donors, which may be a complicated process. The blood filter chamber (BFC) discarded after an anti-D donor's donation might provide a source of Ig-encoding RNA. This study aims to evaluate whether used BFCs are a suitable source of Ig-encoding RNA for phage display. MATERIAL AND METHODS: Haemonetics PCS2 BFCs were obtained from 10 anti-D donors for total RNA extraction, cDNA synthesis and amplification of VH and VL IgG sequences for assembly of single-chain variable fragments (scFvs). A scFv-phage display library was constructed and 3 rounds of biopanning were performed using D-positive and D-negative red blood cells (RBCs). Positive phage clones were isolated, Sanger sequenced and, where possible, reformatted into full-length human IgGs to define specificity. The BFC aggregates from 2 anti-D donors underwent a Wright-Giemsa stain and hematological cell count. RESULTS: Of 10 BFCs, a sufficient yield of total RNA for library construction was obtained from BFCs containing cellular aggregates (n=5). Aggregate analysis showed lymphocytes were the cellular source of Ig-encoding RNA. From the 5 samples with aggregates, scFvs were assembled from amplified IgG variable regions. The library constructed from 1 of these samples resulted in the isolation of clones binding to D-positive RBCs with IGHV3 gene usage. Of the 4 reformatted IgG, 3 were anti-D and 1 had undefined specificity. DISCUSSION: BFC aggregates are a new and convenient source of Ig-encoding RNA which can be used to construct Ig gene libraries for mAb isolation and discovery via antibody phage display.
Assuntos
Anticorpos Monoclonais/análise , Plasma/química , Imunoglobulina rho(D)/análise , Animais , Doadores de Sangue , Células CHO , Cricetulus , Filtração , Biblioteca Gênica , Humanos , Biblioteca de Peptídeos , RNA/análiseRESUMO
Anti-D immunoglobulin prophylaxis reduces the risk of RhD negative women becoming alloimmunised to the RhD antigen and is a major preventative strategy in reducing the burden of haemolytic disease of the fetus and newborn (HDFN). HDFN also arises from other maternal red cell antibodies, with the most clinically significant, after anti-D, being anti-K, anti-c and anti-E. Among the 39 human blood group systems advanced genomic technologies are still revealing novel or rare antigens involved in maternal alloimmunisation. Where clinically significant maternal antibodies are detected in pregnancy, non-invasive prenatal testing (NIPT) of cell-free fetal DNA provides a safe way to assess the fetal blood group antigen status. This provides information as to the risk for HDFN and thus guides management strategies. In many countries, NIPT fetal RHD genotyping as a diagnostic test using real-time PCR has already been integrated into routine clinical care for the management of women with allo-anti-D to assess the risk for HDFN. In addition, screening programs have been established to provide antenatal assessment of the fetal RHD genotype in non-alloimmunised RhD negative pregnant women to target anti-D prophylaxis to those predicted to be carrying an RhD positive baby. Both diagnostic and screening assays exhibit high accuracy (over 99 %). NIPT fetal genotyping for atypical (other than RhD) blood group antigens presents more challenges as most arise from a single nucleotide variant. Recent studies show potential for genomic and digital technologies to provide a personalised medicine approach with NIPT to assess fetal blood group status for women with other (non-D) red cell antibodies to manage the risk for HDFN.
Assuntos
Anemia Hemolítica Autoimune/diagnóstico , Eritroblastose Fetal/imunologia , Testes Genéticos/métodos , Isoanticorpos/imunologia , Diagnóstico Pré-Natal/métodos , Anemia Hemolítica Autoimune/patologia , Feminino , Humanos , GravidezRESUMO
BACKGROUND: MNS blood group system genes GYPA and GYPB share a high degree of sequence homology and gene structure. Homologous exchanges between GYPA and GYPB form hybrid genes encoding hybrid glycophorins GP(A-B-A) and GP(B-A-B). Over 20 hybrid glycophorins have been characterised. Each has a distinct phenotype defined by the profile of antigens expressed including Mia. Seven hybrid glycophorins carry Mia and have been reported in Caucasian and Asian population groups. In Australia, the population is diverse; however, the prevalence of hybrid glycophorins in the population has never been determined. The aims of this study were to determine the frequency of Mia and to classify Mia-positive hybrid glycophorins in an Australian blood donor population. METHOD: Blood samples from 5,098 Australian blood donors were randomly selected and screened for Mia using anti-Mia monoclonal antibody (CBC-172) by standard haemagglutination technique. Mia-positive red blood cells (RBCs) were further characterised using a panel of phenotyping reagents. Genotyping by high-resolution melting analysis and DNA sequencing were used to confirm serology. RESULT: RBCs from 11/5,098 samples were Mia-positive, representing a frequency of 0.22%. Serological and molecular typing identified four types of Mia-positive hybrid glycophorins: GP.Hut (n = 2), GP.Vw (n = 3), GP.Mur (n = 5), and 1 GP.Bun (n = 1). GP.Mur was the most common. CONCLUSION: This is the first comprehensive study on the frequency of Mia and types of hybrid glycophorins present in an Australian blood donor population. The demographics of Australia are diverse and ever-changing. Knowing the blood group profile in a population is essential to manage transfusion needs.
RESUMO
BACKGROUND: Immunohematology reference laboratories provide red blood cell (RBC), platelet (PLT), and neutrophil typing to resolve complex cases, using serology and commercial DNA tests that define clinically important antigens. Broad-range exome sequencing panels that include blood group targets provide accurate blood group antigen predictions beyond those defined by serology and commercial typing systems and identify rare and novel variants. The aim of this study was to design and assess a panel for targeted exome sequencing of RBC, PLT, and neutrophil antigen-associated genes to provide a comprehensive profile in a single test, excluding unrelated gene targets. STUDY DESIGN AND METHODS: An overlapping probe panel was designed for the coding regions of 64 genes and loci involved in gene expression. Sequencing was performed on 34 RBC and 17 PLT/neutrophil reference samples. Variant call outputs were analyzed using software to predict star allele diplotypes. Results were compared with serology and previous sequence genotyping data. RESULTS: Average coverage exceeded 250×, with more than 94% of targets at Q30 quality or greater. Increased coverage revealed a variant in the Scianna system that was previously undetected. The software correctly predicted allele diplotypes for 99.5% of RBC blood groups tested and 100% of PLT and HNA antigens excepting HNA-2. Optimal throughput was 12 to 14 samples per run. CONCLUSION: This single-test system demonstrates high coverage and quality, allowing for the detection of previously overlooked variants and increased sample throughput. This system has the potential to integrate genomic testing across laboratories within hematologic reference settings.