Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
PeerJ ; 6: e5796, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364550

RESUMO

Biological control, a globally-important ecosystem service, can provide long-term and broad-scale suppression of invasive pests, weeds and pathogens in natural, urban and agricultural environments. Following (few) historic cases that led to sizeable environmental up-sets, the discipline of arthropod biological control has-over the past decades-evolved and matured. Now, by deliberately taking into account the ecological risks associated with the planned introduction of insect natural enemies, immense environmental and societal benefits can be gained. In this study, we document and analyze a successful case of biological control against the cassava mealybug, Phenacoccus manihoti (Hemiptera: Pseudococcidae) which invaded Southeast Asia in 2008, where it caused substantial crop losses and triggered two- to three-fold surges in agricultural commodity prices. In 2009, the host-specific parasitoid Anagyrus lopezi (Hymenoptera: Encyrtidae) was released in Thailand and subsequently introduced into neighboring Asian countries. Drawing upon continental-scale insect surveys, multi-year population studies and (field-level) experimental assays, we show how A. lopezi attained intermediate to high parasitism rates across diverse agro-ecological contexts. Driving mealybug populations below non-damaging levels over a broad geographical area, A. lopezi allowed yield recoveries up to 10.0 t/ha and provided biological control services worth several hundred dollars per ha (at local farm-gate prices) in Asia's four-million ha cassava crop. Our work provides lessons to invasion science and crop protection worldwide. Furthermore, it accentuates the importance of scientifically-guided biological control for insect pest management, and highlights its potentially large socio-economic benefits to agricultural sustainability in the face of a debilitating invasive pest. In times of unrelenting insect invasions, surging pesticide use and accelerating biodiversity loss across the globe, this study demonstrates how biological control-as a pure public good endeavor-constitutes a powerful, cost-effective and environmentally-responsible solution for invasive species mitigation.

2.
F1000Res ; 6: 317, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28580127

RESUMO

Background: Opportunities to use data and information to address challenges in international agricultural research and development are expanding rapidly. The use of agricultural trial and evaluation data has enormous potential to improve crops and management practices. However, for a number of reasons, this potential has yet to be realized. This paper reports on the experience of the AgTrials initiative, an effort to build an online database of agricultural trials applying principles of interoperability and open access. Methods: Our analysis evaluates what worked and what did not work in the development of the AgTrials information resource. We analyzed data on our users and their interaction with the platform. We also surveyed our users to gauge their perceptions of the utility of the online database. Results: The study revealed barriers to participation and impediments to interaction, opportunities for improving agricultural knowledge management and a large potential for the use of trial and evaluation data.  Conclusions: Technical and logistical mechanisms for developing interoperable online databases are well advanced.  More effort will be needed to advance organizational and institutional work for these types of databases to realize their potential.

3.
F1000Res ; 5: 885, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303632

RESUMO

Dryland cereals and legumes  are important crops in farming systems across the world.  Yet they are frequently neglected among the priorities for international agricultural research and development, often due to lack of information on their magnitude and extent. Given what we know about the global distribution of dryland cereals and legumes, what regions should be high priority for research and development to improve livelihoods and food security? This research evaluated the geographic dimensions of these crops and the farming systems where they are found worldwide. The study employed geographic information science and data to assess the key farming systems and regions for these crops. Dryland cereal and legume crops should be given high priority in 18 farming systems worldwide, where their cultivated area comprises more than 160 million ha. These regions include the dryer areas of South Asia, West and East Africa, the Middle East and North Africa, Central America and other parts of Asia. These regions are prone to drought and heat stress, have limiting soil constraints, make up half of the global population and account for 60 percent of the global poor and malnourished. The dryland cereal and legume crops and farming systems merit more research and development attention to improve productivity and address development problems. This project developed an open access dataset and information resource that provides the basis for future analysis of the geographic dimensions of dryland cereals and legumes.

4.
Front Physiol ; 4: 40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23515351

RESUMO

Crop improvement efforts have benefited greatly from advances in available data, computing technology, and methods for targeting genotypes to environments. These advances support the analysis of genotype by environment interactions (GEI) to understand how well a genotype adapts to environmental conditions. This paper reviews the use of spatial analysis to support crop improvement research aimed at matching genotypes to their most appropriate environmental niches. Better data sets are now available on soils, weather and climate, elevation, vegetation, crop distribution, and local conditions where genotypes are tested in experimental trial sites. The improved data are now combined with spatial analysis methods to compare environmental conditions across sites, create agro-ecological region maps, and assess environment change. Climate, elevation, and vegetation data sets are now widely available, supporting analyses that were much more difficult even 5 or 10 years ago. While detailed soil data for many parts of the world remains difficult to acquire for crop improvement studies, new advances in digital soil mapping are likely to improve our capacity. Site analysis and matching and regional targeting methods have advanced in parallel to data and technology improvements. All these developments have increased our capacity to link genotype to phenotype and point to a vast potential to improve crop adaptation efforts.

5.
Front Physiol ; 3: 326, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22934074

RESUMO

The Crop Ontology (CO) of the Generation Challenge Program (GCP) (http://cropontology.org/) is developed for the Integrated Breeding Platform (IBP) (http://www.integratedbreeding.net/) by several centers of The Consultative Group on International Agricultural Research (CGIAR): bioversity, CIMMYT, CIP, ICRISAT, IITA, and IRRI. Integrated breeding necessitates that breeders access genotypic and phenotypic data related to a given trait. The CO provides validated trait names used by the crop communities of practice (CoP) for harmonizing the annotation of phenotypic and genotypic data and thus supporting data accessibility and discovery through web queries. The trait information is completed by the description of the measurement methods and scales, and images. The trait dictionaries used to produce the Integrated Breeding (IB) fieldbooks are synchronized with the CO terms for an automatic annotation of the phenotypic data measured in the field. The IB fieldbook provides breeders with direct access to the CO to get additional descriptive information on the traits. Ontologies and trait dictionaries are online for cassava, chickpea, common bean, groundnut, maize, Musa, potato, rice, sorghum, and wheat. Online curation and annotation tools facilitate (http://cropontology.org) direct maintenance of the trait information and production of trait dictionaries by the crop communities. An important feature is the cross referencing of CO terms with the Crop database trait ID and with their synonyms in Plant Ontology (PO) and Trait Ontology (TO). Web links between cross referenced terms in CO provide online access to data annotated with similar ontological terms, particularly the genetic data in Gramene (University of Cornell) or the evaluation and climatic data in the Global Repository of evaluation trials of the Climate Change, Agriculture and Food Security programme (CCAFS). Cross-referencing and annotation will be further applied in the IBP.

6.
Rev. panam. salud pública ; 26(5): 419-428, nov. 2009. mapas, tab
Artigo em Espanhol | LILACS | ID: lil-534250

RESUMO

OBJETIVO: Identificar zonas geográficas de América Latina y el Caribe para la biofortificación de cultivos básicos como frijol, maíz, arroz, yuca y batata, contribuyendo así a reducir las deficiencias nutricionales en la Región. MÉTODO: Se generó un sistema de información geográfica (SIG) que incluyó registros sobre riesgos nutricionales, producción de cultivos, consumos alimenticios, y datos demográficos y socioeconómicos para 11 países de la Región. Se realizaron cuatro estudios de caso (en Guatemala, México, Bolivia y Colombia) basados en un análisis exploratorio y descriptivo de mapas temáticos, y su superposición y comparación para buscar patrones espaciales e identificar zonas candidatas de intervención. RESULTADOS: En Guatemala, las mayores tasas de riesgos nutricionales, producción de frijol y densidad poblacional coincidieron en las regiones Nororiental y Suroriental. En México, la distribución espacial de los niveles más altos de riesgos nutricionales, pobreza y producción de maíz se concentraron en los municipios del centro y sur. En Bolivia la producción de frijol tendió a situarse en el este del país, y el riesgo nutricional en el oeste. En Colombia, tanto los riesgos nutricionales como la producción de yuca mostraron una gran dispersión geográfica. CONCLUSIONES: Para Guatemala se propone la biofortificación con hierro del frijol en el sur de la región Nororiental y en la Suroriental, en México, la biofortificación del maíz con aminoácidos en los municipios productores del centro y sur del país; para Bolivia, una intervención con frijol biofortificado con hierro y zinc en zonas productoras de Santa Cruz, Chuquisaca y Tarija; y en Colombia, la biofortificación de yuca con β-caroteno en los departamentos de Córdoba y Cundinamarca.


OBJECTIVE: To identify geographical areas in Latin America and the Caribbean where biofortification of staple crops, such as beans, corn, rice, cassava, and sweet potatoes, might help reduce nutritional deficiencies in the Region. METHODS: A geographic information system (GIS) was produced with records on nutritional risks, crop production, food consumption, and demographic and socioeconomic data, for 11 countries in the Region. Four case studies were conducted (in Bolivia, Colombia, Guatemala, and Mexico) using exploratory and descriptive analysis of thematic maps that were superimposed and compared to reveal overlapping and spatial patterns, thereby identifying areas suited to intervention. RESULTS: In Guatemala, the highest rates of nutritional risk, bean production, and population density overlapped in the northeast and southeast areas. In Mexico, spatial distribution of the highest risk levels for nutrition, poverty, and corn production were concentrated in the central and southern municipalities. In Bolivia, bean production tended to be in the eastern part of the country, and nutritional risk, in the west. In Colombia, both nutritional risk and cassava production showed wide geographic dispersion. CONCLUSIONS: For Guatemala, we propose iron biofortification of beans in the southern parts of the northeast and southeast; for Mexico, amino-acid biofortification of corn in the central and southern municipalities that produce it; for Bolivia, iron and zinc biofortification of beans in the bean-producing areas of Santa Cruz, Chuquisaca, and Tarija; and for Colombia, β-carotene biofortification of cassava in the Cordoba and Cundinamarca departments.


Assuntos
Produtos Agrícolas , Alimentos Fortificados , Região do Caribe , América Latina
7.
Int J Health Geogr ; 8: 29, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19454034

RESUMO

BACKGROUND: Agricultural science can address a population's vitamin, amino acid and mineral malnutrition through biofortification - agronomy, plant breeding and biotechnology to develop crops with high nutrient contents. Biofortified crop varieties should be grown in areas with populations at risk of nutrient deficiency and in areas where the same crop is already grown and consumed. Information on the population at risk of nutrient deficiency is rarely available for sub-national administrative units, such as provinces, districts, and municipalities. Nor is this type of information commonly analyzed with data on agricultural production. This project developed a method to identify populations at risk of nutrient deficiency in zones with high crop production, places where biofortification interventions could be targeted. RESULTS: Nutrient deficiency risk data were combined with crop production and socioeconomic data to assess the suitability of establishing an intervention. Our analysis developed maps of candidate sites for biofortification interventions for nine countries in Latin America and the Caribbean. Results for Colombia, Nicaragua, and Bolivia are presented in this paper. Interventions in northern Colombia appear promising for all crops, while sites for bean biofortification are widely scattered throughout the country. The most promising sites in Nicaragua are found in the center-north region. Candidate sites for biofortification in Bolivia are found in the central part of the country, in the Andes Mountains. The availability and resolution of data limits the analysis. Some areas show opportunities for biofortification of several crops, taking advantage of their spatial coincidence. Results from this analysis should be confirmed by experts or through field visits. CONCLUSION: This study demonstrates a method for identifying candidate sites for biofortification interventions. The method evaluates populations at risk of nutrient deficiencies for sub-national administrative regions, and provides a reasonable alternative to more costly, information-intensive approaches.


Assuntos
Produtos Agrícolas , Alimentos Fortificados , Geografia , Valor Nutritivo , América Latina
8.
Rev Panam Salud Publica ; 26(5): 419-28, 2009 Nov.
Artigo em Espanhol | MEDLINE | ID: mdl-20107693

RESUMO

OBJECTIVE: To identify geographical areas in Latin America and the Caribbean where biofortification of staple crops, such as beans, corn, rice, cassava, and sweet potatoes, might help reduce nutritional deficiencies in the Region. METHODS: A geographic information system (GIS) was produced with records on nutritional risks, crop production, food consumption, and demographic and socioeconomic data, for 11 countries in the Region. Four case studies were conducted (in Bolivia, Colombia, Guatemala, and Mexico) using exploratory and descriptive analysis of thematic maps that were superimposed and compared to reveal overlapping and spatial patterns, thereby identifying areas suited to intervention. RESULTS: In Guatemala, the highest rates of nutritional risk, bean production, and population density overlapped in the northeast and southeast areas. In Mexico, spatial distribution of the highest risk levels for nutrition, poverty, and corn production were concentrated in the central and southern municipalities. In Bolivia, bean production tended to be in the eastern part of the country, and nutritional risk, in the west. In Colombia, both nutritional risk and cassava production showed wide geographic dispersion. CONCLUSIONS: For Guatemala, we propose iron biofortification of beans in the southern parts of the northeast and southeast; for Mexico, amino-acid biofortification of corn in the central and southern municipalities that produce it; for Bolivia, iron and zinc biofortification of beans in the bean-producing areas of Santa Cruz, Chuquisaca, and Tarija; and for Colombia, beta-carotene biofortification of cassava in the Cordoba and Cundinamarca departments.


Assuntos
Produtos Agrícolas , Alimentos Fortificados , Região do Caribe , América Latina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA