Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 294: 110458, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32234226

RESUMO

Despite being toxic at a high concentrations, reactive oxygen species (ROS) play a pivotal role as signaling molecules in responses to stress and regulation of plant development. The mitochondrial electron transport chain (ETC) is the major source of ROS in cells. Although the regulation of ROS in mitochondria has been well elucidated, the protein-protein interaction-based regulation of ETC members has not been well elucidated. In this study, we identified a CBS domain-containing protein, CBSX3, and found that CBSX3 activates o-type thioredoxin (Trx-o2) in mitochondria. In addition, we found that Trx-o2 interacts with SDH1, a subunit of ETC complex II. Knockdown (KD) of CBSX3 revealed anther indehiscence due to deficient lignin deposition caused by insufficient ROS accumulation, and increased expression of genes related to cell cycle and accelerated plant growth. However, in the CBSX3-overexpression plants, ROS accumulation increased, and cell cycle-related gene expression decreased, and thereby plant growth was retarded and leaf size decreased. Moreover, KD of CBSX3 and Trx-o2 conferred resistance to mitochondria ETC inhibitors in terms of ROS release. Taken together, we suggest that CBSX3-Trx-o2 is a ROS generation regulator of mitochondria in plants and plays an important role in regulating plant development and the redox system.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo , Tiorredoxinas/metabolismo
2.
Plant Cell Rep ; 39(3): 419-430, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31863135

RESUMO

KEY MESSAGE: PpCKX1 localizes to vacuoles and is dominantly expressed in the stem cells. PpCKX1 regulates developmental changes with increased growth of the rhizoid and enhances dehydration and salt tolerance. Cytokinins (CKs) are plant hormones that regulate plant development as well as many physiological processes, such as cell division, leaf senescence, control of shoot/root ratio, and reproductive competence. Cytokinin oxidases/dehydrogenases (CKXs) control CK concentrations by degradation, and thereby influence plant growth and development. In the moss Physcomitrella patens, an evolutionarily early divergent plant, we identified six putative CKXs that, by phylogenetic analysis, form a monophyletic clade. We also observed that ProPpCKX1:GUS is expressed specifically in the stem cells and surrounding cells and that CKX1 localizes to vacuoles, as indicated by Pro35S:PpCKX1-smGFP. Under normal growth conditions, overexpression of PpCKX1 caused many phenotypic changes at different developmental stages, and we suspected that increased growth of the rhizoid could affect those changes. In addition, we present evidence that the PpCKX1-overexpressor plants show enhanced dehydration and salt stress tolerance. Taken together, we suggest that PpCKX1 plays regulatory roles in development and adaptation to abiotic stresses in this evolutionarily early land plant species.


Assuntos
Bryopsida/enzimologia , Bryopsida/crescimento & desenvolvimento , Oxirredutases/metabolismo , Tolerância ao Sal , Bryopsida/genética , Citocininas/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas , Fenótipo , Filogenia , Plantas Geneticamente Modificadas , Estresse Salino/genética , Tolerância ao Sal/genética , Células-Tronco/metabolismo , Vacúolos/metabolismo
3.
Plant Cell Rep ; 39(3): 325-334, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31773253

RESUMO

KEY MESSAGE: The chloroplast-localized protein CSAP is an ABA-responsive factor and positively regulates dark-induced senescence. This phenomenon is controlled by SAUL1 in Arabidopsis. We report here that CSAP (Chloroplast-localized Senescence-Associated Protein, AT5G39520) functions as a positive regulator of senescence and is controlled by SAUL1 (Senescence Associated E3 Ubiquitin Ligase 1) in Arabidopsis. CSAP transcript level was gradually increased when senescence was progressed. Under dark conditions, the csap mutant showed delayed leaf senescence and reduced chlorophyll breakdown, but overexpression of CSAP accelerated leaf senescence and expressions of chlorophyll catabolic genes were up-regulated compared to the wild-type (WT). NCED3 and AAO3, which are involved in ABA biosynthesis, also showed higher expression in the overexpression lines than the WT. It is known that the CSAP transcript is increased in the saul1 mutant that shows precocious senescence. In our experiments, we confirmed that CSAP interacts with SAUL1 by the yeast two-hybrid and pull-down assays. In addition, we found that SAUL1 decreases the stability of CSAP in the presence of ABA. Taken together, we suggest that CSAP accelerates leaf senescence in the dark and this process is controlled by SAUL1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Escuridão , Proteínas de Membrana/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Ubiquitina-Proteína Ligases/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Membrana/genética , Mutação/genética , Fenótipo , Folhas de Planta/efeitos dos fármacos , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos
4.
New Phytol ; 225(6): 2468-2483, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31691980

RESUMO

During the evolution of land plants from aquatic to terrestrial environments, their aerial surfaces were surrounded by cuticle composed of cutin and cuticular waxes to protect them from environmental stresses. Glycerol-3-phosphate acyltransferase (GPAT) harboring bifunctional sn-2 acyltransferase/phosphatase activity produces 2-monoacylglycerol, a precursor for cutin synthesis. Here, we report that bifunctional sn-2 GPATs play roles in cuticle biosynthesis and gametophore development of Physcomitrella patens. Land plant-type cuticle was observed in gametophores but not in protonema. The expression of endoplasmic reticulum-localized PpGPATs was significantly upregulated in gametophores compared with protonema. Floral organ fusion and permeable cuticle phenotypes of Arabidopsis gpat6-2 petals were rescued to the wild type (WT) by the expression of PpGPAT2 or PpGPAT4. Disruption of PpGPAT2 and PpGPAT4 caused a significant reduction of total cutin loads, and a prominent decrease in the levels of palmitic and 10,16-dihydroxydecanoic acids, which are major cutin monomers in gametophores. Δppgpat2 mutants displayed growth retardation, delayed gametophore development, increased cuticular permeability, and reduced tolerance to drought, osmotic and salt stresses compared to the WT. Genome-wide analysis of genes encoding acyltransferase or phosphatase domains suggested that the occurrence of sn-2 GPATs with both domains may be a key event in cuticle biogenesis of land plants.


Assuntos
Bryopsida , Glicerol-3-Fosfato O-Aciltransferase/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Regulação da Expressão Gênica de Plantas , Glicerol , Fosfatos
5.
Gene ; 702: 158-165, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30930225

RESUMO

Secondary cell wall (SCW) thickening provides the mechanical force for anther dehiscence and plays an important role in the formation of xylem structure. We have previously reported that γMYB2, a MYB coiled-coil protein, directly binds to the P1BS cis-element of the PLA2-γ promoter and acts as a co-activator of γMYB1 in controlling the expression of PLA2-γ. In this study, we analyzed morphological phenotypes of the constitutive overexpression (γMYB2-OE) and knock-down (γMYB2-KD) lines of γMYB2. We found that γMYB2 overexpression caused the collapse of the endothecium layer, thereby suppressing anther dehiscence and forming short infertile siliques. The γMYB2-OE also showed less cellulose deposition in the xylem and had a longer primary stem than the wild-type, while γMYB2-KD had greater cellulose accumulation and a shorter primary stem than the wild-type. We demonstrated that the male sterility and the longer primary stem in γMYB2-OE were caused by reduced expression of SCW thickening-related genes. Our results suggest that γMYB2 acts as a negative regulator in controlling the SCW thickening in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Parede Celular/metabolismo , Flores/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/genética , Parede Celular/ultraestrutura , Celulose/metabolismo , Flores/anatomia & histologia , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Infertilidade das Plantas , Caules de Planta/anatomia & histologia , Caules de Planta/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xilema/metabolismo
6.
Plant Mol Biol ; 96(3): 315-326, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29335898

RESUMO

KEY MESSAGE: The trichome-related protein (TRP) is a novel transcription factor (TF) that negatively regulates trichome initiation-related TFs through gibberellin (GA) signaling. Trichomes, which are outgrowths of leaf epidermal cells, provide the plant with a first line of defense against damage from herbivores and reduce transpiration. The initiation and development of trichomes are regulated by a network of positively or negatively regulating transcription factors (TFs). However, little information is currently available on transcriptional regulation related to trichome formation. Here, we report a novel TF Trichome-Related Protein (TRP) that was observed to negatively regulate the trichome initiation-related TFs through gibberellic acid (GA) signaling. ProTRP:GUS revealed that TRP was only expressed in the trichome. The TRP loss-of-function mutant (trp) had an increased number of trichomes on the flower, cauline leaves, and main inflorescence stems compared to the wild-type. In contrast, TRP overexpression lines (TRP-Ox) exhibited a decreased number of trichomes on cauline leaves and main inflorescence stem following treatment with exogenous GA. Moreover, the expressions of trichome initiation regulators (GIS, GIS2, ZFP8, GL1, and GL3) increased in trp plants but decreased in TRP-Ox lines after GA treatment. TRP was observed to physically interact with ZFP5, a C2H2 TF that controls trichome cell development through GA signaling, both in vivo and in vitro. Based on these results, we suggest that TRP functions upstream of the trichome initiation regulators and represses the binding of ZFP5 to the ZFP8 promoter.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Giberelinas/farmacologia , Canais de Potencial de Receptor Transitório/metabolismo , Tricomas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação , Reguladores de Crescimento de Plantas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Canais de Potencial de Receptor Transitório/genética
7.
FEBS Lett ; 587(12): 1773-8, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23660402

RESUMO

We have characterized the function of a plant R2R3-MYB transcription factor, Arabidopsis thaliana MYB20 (AtMYB20). Transgenic plants overexpressing AtMYB20 (AtMYB20-OX) enhanced salt stress tolerance while repression lines (AtMYB20-SRDX) were more vulnerable to NaCl than wild-type plants. Following NaCl treatment, the expressions of ABI1, ABI2 and AtPP2CA, which encode type 2C serine/threonine protein phosphatases (PP2Cs) that act as negative regulators in abscisic acid (ABA) signaling, were suppressed in AtMYB20-OX but induced in AtMYB20-SRDX. The electrophoretic mobility shift assay results revealed that AtMYB20 binds to the promoter regions containing the MYB recognition sequence (TAACTG) and an ACGT core element of ABI1 and AtPP2CA. These findings suggest that AtMYB20 down-regulates the expression of PP2Cs, the negative regulator of ABA signaling, and enhances salt tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fosfoproteínas Fosfatases/genética , Tolerância ao Sal/genética , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Adaptação Fisiológica/genética , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação para Baixo , Espaço Intracelular/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteína Fosfatase 2C , Transporte Proteico , Plântula/genética , Plântula/fisiologia , Transdução de Sinais/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética
8.
Plant Cell ; 23(10): 3577-94, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22021414

RESUMO

Plant thioredoxins (Trxs) participate in two redox systems found in different cellular compartments: the NADP-Trx system (NTS) in the cytosol and mitochondria and the ferredoxin-Trx system (FTS) in the chloroplast, where they function as redox regulators by regulating the activity of various target enzymes. The identities of the master regulators that maintain cellular homeostasis and modulate timed development through redox regulating systems have remained completely unknown. Here, we show that proteins consisting of a single cystathionine ß-synthase (CBS) domain pair stabilize cellular redox homeostasis and modulate plant development via regulation of Trx systems by sensing changes in adenosine-containing ligands. We identified two CBS domain-containing proteins in Arabidopsis thaliana, CBSX1 and CBSX2, which are localized to the chloroplast, where they activate all four Trxs in the FTS. CBSX3 was found to regulate mitochondrial Trx members in the NTS. CBSX1 directly regulates Trxs and thereby controls H(2)O(2) levels and regulates lignin polymerization in the anther endothecium. It also affects plant growth by regulating photosynthesis-related [corrected] enzymes, such as malate dehydrogenase, via homeostatic regulation of Trxs. Based on our findings, we suggest that the CBSX proteins (or a CBS pair) are ubiquitous redox regulators that regulate Trxs in the FTS and NTS to modulate development and maintain homeostasis under conditions that are threatening to the cell.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cistationina beta-Sintase/metabolismo , Tiorredoxinas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Cloroplastos/enzimologia , Cotilédone/enzimologia , Cistationina beta-Sintase/química , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/isolamento & purificação , Flores/enzimologia , Flores/ultraestrutura , Regulação da Expressão Gênica de Plantas , Homeostase , Peróxido de Hidrogênio/metabolismo , Lignina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Insercional , Oxirredução , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA