Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Scanning ; 2023: 2936788, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260614

RESUMO

Focused ion beams have recently emerged as a powerful tool for ultrastructural imaging of biological samples. In this article, we show that helium ion microscopy (HIM), in combination with ion milling, can be used to visualize the inner structure of both major and minor ampullate silk fibers of the orb-web weaving spider Nephila madagascariensis. The internal nanofibrils were imaged in pristine silk fibers, with little or no damage to the sample structure observed. Furthermore, a method to cut/rupture the fibers using He+ ions combined with internal sample tension is presented. This showed that the stretching and rupturing of spider silk is a highly dynamic process with considerable material reorganization.


Assuntos
Hélio , Seda , Seda/química , Seda/ultraestrutura , Microscopia
2.
Sci Rep ; 13(1): 6695, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095261

RESUMO

Spider silk fibres have unique mechanical properties due to their hierarchical structure and the nanoscale organization of their proteins. Novel imaging techniques reveal new insights into the macro- and nanoscopic structure of Major (MAS) and Minor (MiS) Ampullate silk fibres from pristine samples of the orb-web spider Nephila Madagascariensis. Untreated threads were imaged using Coherent Anti-Stokes Raman Scattering and Confocal Microscopy, which revealed an outer lipid layer surrounding an autofluorescent protein core, that is divided into two layers in both fibre types. Helium ion imaging shows the inner fibrils without chemical or mechanical modifications. The fibrils are arranged parallel to the long axis of the fibres with typical spacing between fibrils of 230 nm ± 22 nm in the MAS fibres and 99 nm ± 24 nm in the MiS fibres. Confocal Reflection Fluorescence Depletion (CRFD) microscopy imaged these nano-fibrils through the whole fibre and showed diameters of 145 nm ± 18 nm and 116 nm ± 12 nm for MAS and MiS, respectively. The combined data from HIM and CRFD suggests that the silk fibres consist of multiple nanoscale parallel protein fibrils with crystalline cores oriented along the fibre axes, surrounded by areas with less scattering and more amorphous protein structures.


Assuntos
Seda , Aranhas , Animais , Seda/química , Microscopia Confocal
3.
Eur J Pharm Sci ; 182: 106371, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36621615

RESUMO

Topical therapies for chronic skin diseases suffer from a low patient compliance due to the inconvenient treatment regimens of available products. Dissolvable microneedles (MN) with modified release offer an interesting possibility to increase the compliance by acting as a depot in the skin and thereby decreasing the dosing frequency. Furthermore, the bioavailability can be increased significantly by bypassing the barrier of the skin by the direct penetration of the MN into the skin. In this study the depot effect and skin penetration of an innovative dissolvable MN patch was assessed by insertion in ex vivo human skin and in vivo using minipigs. The MN patches are based on biodegradable polymers and the active pharmaceutical ingredients calcipotriol (Calci) and betamethasone-17-21-dipropionate (BDP) used to treat psoriasis. Using computed tomography (CT) and Coherent anti-Stokes Raman scattering (CARS) microscopy it was possible to visualize the skin penetration and follow the morphology of the MN as function of time in the skin. The depot effect was assessed by studying the modified in vitro release in an aqueous buffer and by comparing the drug release of a single application of a patch both ex vivo and in vivo to daily application of a marketed oleogel containing the same active pharmaceutical ingredients. The CT and CARS images showed efficient penetration of the MN patches into the upper dermis and a slow swelling process of the drug containing tip over a period of 8 days. Furthermore, CARS demonstrated that it can be used as a noninvasive technique with potential applicability in clinical settings. The in vitro release studies show a release of 54% over a time period of 30 days. The pharmacological relevance of MNs was confirmed in human skin explants and in vivo after single application and showed a similar response on calcipotriol and BDP mediated signaling events compared to daily application of the active oleogel. Altogether it was demonstrated that the MN can penetrate the skin and have the potential to provide a depot effect.


Assuntos
Agulhas , Pele , Animais , Humanos , Suínos , Preparações Farmacêuticas/metabolismo , Liberação Controlada de Fármacos , Porco Miniatura , Pele/metabolismo , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos
4.
J Biophotonics ; 15(10): e202200110, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35855552

RESUMO

In this work using Coherent anti-Stokes Raman Scattering microscopy, it was possible to directly measure the time dependent, spatially resolved change in concentration of water (D2 O) in intact skin tissue with a spatial resolution of under 1 µm, and combined with a multilayer diffusion model, diffusion coefficients at different depths in the tissue were extracted. The results show that the diffusion varies at different layers throughout the Stratum Corneum (SC), indicating that the SC is not a homogeneous barrier but a complicated heterogeneous structure. Interestingly, averaging over the diffusion at the different depths and samples gave a relatively constant value of 0.047 ± 0.01 µm2 /second. Treating the skin with acetone or tape stripping led to an increased diffusion coefficient of 0.064 ± 0.02 µm2 /second and 0.079 ± 0.03 µm2 /second, respectively. The combined method and model presented here shows potential for wide applications for measuring spatially resolved diffusion of different substances in a variety of different samples.


Assuntos
Análise Espectral Raman , Água , Acetona , Humanos , Microscopia , Pele/diagnóstico por imagem , Análise Espectral Raman/métodos , Água/química
5.
Biomacromolecules ; 20(6): 2384-2391, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31074979

RESUMO

Spider silk's mechanical properties make it an interesting material for many industrial applications. The structure and nanoscopic organization of its proteins are the basis of these qualities. In this study, the emission maxima of the autofluorescence from the protein core of major and minor ampullate silk fibers from the orb-web-weaving spider Nephila madagascariensis are determined and found to be 534 ± 11 and 547 ± 19 nm, respectively. Molecular conformational changes during applied strain are observed in both fiber types using two-photon excitation polarization measurements. Our findings showed that within the fibers the autofluorescent dipoles are separated into two distinct populations, one randomly orientated (amorphous regions) and one with aligned dipoles as found in crystalline structures. The crystalline-amorphous ratio was determined, and it was found that the crystalline dipoles made up around 30 and 20% of the autofluorescent dipoles in major and minor ampullate silk fibers, respectively. Using two-photon polarization measurements, it is possible to directly observe that the major and minor ampullate silk fibers structurally adapt to the applied stress, as well as discern different molecular conformational changes between major and minor ampullates. It was seen that the crystalline-amorphous ratio increased, with up to 9% for major fibers and 6% for minor fibers, as strain was applied, suggesting a conformational adaptation of the fiber, interpreted as noncrystalline 310-helices transforming into crystalline ß-sheets.


Assuntos
Fótons , Seda/química , Resistência à Tração , Animais , Estrutura Secundária de Proteína , Aranhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA