Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11477, 2023 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-37455266

RESUMO

In the last decade, Ultrafast ultrasound localisation microscopy has taken non-invasive deep vascular imaging down to the microscopic level. By imaging diluted suspensions of circulating microbubbles in the blood stream at kHz frame rate and localizing the center of their individual point spread function with a sub-resolution precision, it enabled to break the unvanquished trade-off between depth of imaging and resolution by microscopically mapping the microbubbles flux and velocities deep into tissue. However, ULM also suffers limitations. Many small vessels are not visible in the ULM images due to the noise level in areas dimly explored by the microbubbles. Moreover, as the vast majority of studies are performed using 2D imaging, quantification is limited to in-plane velocity or flux measurements which hinders the accurate velocity determination and quantification. Here we show that the backscattering amplitude of each individual microbubble can also be exploited to produce backscattering images of the vascularization with a higher sensitivity compared to conventional ULM images. By providing valuable information about the relative distance of the microbubble to the 2D imaging plane in the out-of-plane direction, backscattering ULM images introduces a physically relevant 3D rendering perception in the vascular maps. It also retrieves the missing information about the out-of-plane motion of microbubbles and provides a way to improve 3D flow and velocity quantification using 2D ULM. These results pave the way to improved visualization and quantification for 2D and 3D ULM.


Assuntos
Fenômenos Biológicos , Microscopia , Microscopia/métodos , Microbolhas , Imagens de Fantasmas , Ultrassonografia/métodos , Meios de Contraste
2.
Sci Rep ; 12(1): 19515, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376408

RESUMO

Fifty million people worldwide are affected by dementia, a heterogeneous neurodegenerative condition encompassing diseases such as Alzheimer's, vascular dementia, and Parkinson's. For them, cognitive decline is often the first marker of the pathology after irreversible brain damage has already occurred. Researchers now believe that structural and functional alterations of the brain vasculature could be early precursors of the diseases and are looking at how functional imaging could provide an early diagnosis years before irreversible clinical symptoms. In this preclinical pilot study, we proposed using functional ultrasound (fUS) on the retina to assess neurovascular alterations non-invasively, bypassing the skull limitation. We demonstrated for the first time the use of functional ultrasound in the retina and applied it to characterize the retinal hemodynamic response function in vivo in rats following a visual stimulus. We then demonstrated that retinal fUS could measure robust neurovascular coupling alterations between wild-type rats and TgF344-AD rat models of Alzheimer's disease. We observed an average relative increase in blood volume of 21% in the WT versus 37% for the TG group (p = 0.019). As a portable, non-invasive and inexpensive technique, rfUS is a promising functional screening tool in clinics for dementia years before symptoms.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Ratos , Projetos Piloto , Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Retina/diagnóstico por imagem , Retina/patologia , Ultrassonografia
3.
Nat Methods ; 19(8): 1004-1012, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35927475

RESUMO

The advent of neuroimaging has increased our understanding of brain function. While most brain-wide functional imaging modalities exploit neurovascular coupling to map brain activity at millimeter resolutions, the recording of functional responses at microscopic scale in mammals remains the privilege of invasive electrophysiological or optical approaches, but is mostly restricted to either the cortical surface or the vicinity of implanted sensors. Ultrasound localization microscopy (ULM) has achieved transcranial imaging of cerebrovascular flow, up to micrometre scales, by localizing intravenously injected microbubbles; however, the long acquisition time required to detect microbubbles within microscopic vessels has so far restricted ULM application mainly to microvasculature structural imaging. Here we show how ULM can be modified to quantify functional hyperemia dynamically during brain activation reaching a 6.5-µm spatial and 1-s temporal resolution in deep regions of the rat brain.


Assuntos
Microscopia , Fenômenos Fisiológicos do Sistema Nervoso , Animais , Encéfalo/fisiologia , Mamíferos , Microbolhas , Microscopia/métodos , Microvasos , Ratos
4.
EBioMedicine ; 79: 103995, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35460988

RESUMO

BACKGROUND: Non-invasive high-resolution imaging of the cerebral vascular anatomy and function is key for the study of intracranial aneurysms, stenosis, arteriovenous malformations, and stroke, but also neurological pathologies, such as degenerative diseases. Direct visualization of the microvascular networks in the whole brain remains however challenging in vivo. METHODS: In this work, we performed 3D ultrafast ultrasound localization microscopy (ULM) using a 2D ultrasound matrix array and mapped the whole-brain microvasculature and flow at microscopic resolution in C57Bl6 mice in vivo. FINDINGS: We demonstrated that the mouse brain vasculature can be imaged directly through the intact skull at a spatial resolution of 20 µm and over the whole brain depth and at high temporal resolution (750 volumes.s-1). Individual microbubbles were tracked to estimate the flow velocities that ranged from 2 mm.s-1 in arterioles and venules up to 100 mm.s-1 in large vessels. The vascular maps were registered automatically with the Allen atlas in order to extract quantitative vascular parameters such as local flow rates and velocities in regions of interest. INTERPRETATION: We show the potential of 3D ULM to provide new insights into whole-brain vascular flow in mice models at unprecedented vascular scale for an in vivo technique. This technology is highly translational and has the potential to become a major tool for the clinical investigation of the cerebral microcirculation. FUNDING: This study was supported by the European Research Council under the European Union's Seventh Framework Program (FP/2007-2013) / ERC Grant Agreement n° 311025 and by the Fondation Bettencourt-Schueller under the program "Physics for Medicine". We acknowledge the ART (Technological Research Accelerator) biomedical ultrasound program of INSERM.


Assuntos
Microbolhas , Microscopia , Animais , Encéfalo/diagnóstico por imagem , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia/métodos , Ultrassonografia/métodos
5.
Phys Med Biol ; 65(21): 215004, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33104523

RESUMO

Calcific aortic stenosis (CAS) is associated with advanced age and comorbidities, therefore a non-invasive therapy for it would be beneficial. We previously demonstrated that ultrasound therapy improved calcified bioprosthetic valve function in an open chest model. For translational applications, we tested non-invasive ultrasound therapy (NIUT) transthoracically on swine aortic valves and investigated the need for antithrombotic treatment as a follow-up. Primary objective: feasibility and safety of NIUT. Secondary objectives: occurrence, severity and evolution of side effects during therapy and at 1 month follow-up. The device (Valvosoft, Cardiawave) consisted of an electronically steered multi-element transducer and a 2D echocardiographic probe. Three groups of swine received treatment on aortic valves: NIUT (group 1; n = 10); NIUT and 1 month antithrombotic treatment (group 2; n = 5); sham group (group 3; n = 4). Feasibility was successfully reached in all treated swine (n = 15) and no life-threatening arrhythmia were detected. Non-sustained ventricular tachycardia occurred during the procedure in seven swine. Decrease or interruption of NIUT ended arrhythmia. Histopathology revealed no valve or surrounding tissue damage and echocardiography revealed no valvular dysfunction. Only one animal had side effects [right ventricle (RV) dilatation], but the RV normalized after therapy cessation with no sequelae at follow-up. No disturbance in biological markers nor valve thrombosis were observed at follow-up. Antithrombotic treatment did not demonstrate any advantage. Survival at 30 d was 100%. We demonstrated, in vivo, the feasibility and safety of transthoracic NIUT on aortic valves in a swine model without serious adverse events. We expect this first-time transthoracic delivery of NIUT to pave the way towards a new non-invasive approach to valve softening in human CAS to restore valve function.


Assuntos
Valva Aórtica , Segurança , Suínos , Terapia por Ultrassom/efeitos adversos , Animais , Valva Aórtica/diagnóstico por imagem , Ecocardiografia , Estudos de Viabilidade , Humanos , Masculino
6.
IEEE Trans Med Imaging ; 38(8): 1852-1857, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30735989

RESUMO

Ultrafast acoustoelectric imaging (UAI) is a novel method for the mapping of biological current densities, which may improve the diagnosis and monitoring of cardiac activation diseases such as arrhythmias. This paper evaluates the feasibility of performing UAI in beating rat hearts. A previously described system based on a 256-channel ultrasound research platform fitted with a 5-MHz linear array was used for simultaneous UAI, ultrafast B-mode, and electrocardiogram (ECG) recordings. In this paper, rat hearts (n = 4) were retroperfused within a Langendorff isolated heart system. A pair of Ag/Cl electrodes were positioned on the epicardium to simultaneously record ECG and UAI signals for imaging frame rates of up to 1000 Hz and a mechanical index of 1.3. To account for the potential effect of motion on the UAI maps, acquisitions for n = 3 hearts were performed with and without suppression of the mechanical contraction using 2,3-butanedione monoxime. Current densities were detected for all four rats in the region of the atrio-ventricular node, with an average contrast-to-noise ratios of 12. The UAI signals' frequency matched the sinus rhythm, even without mechanical contraction, suggesting that the signals measured correspond to physiological electrical activation. UAI signals appeared at the apex and within the ventricular walls with a delay estimated at 29 ms. Finally, the signals from different electrode positions along the myocardium wall showed the possibility of mapping the electrical activation throughout the heart. These results show the potential of UAI for cardiac activation mapping in vivo and in real time.


Assuntos
Técnicas de Imagem Cardíaca/métodos , Técnicas Eletrofisiológicas Cardíacas/métodos , Coração/diagnóstico por imagem , Contração Miocárdica/fisiologia , Animais , Estudos de Viabilidade , Coração/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
7.
Clin Chem Lab Med ; 53(10): 1557-67, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25781546

RESUMO

BACKGROUND: The peptide hepcidin plays a central role in regulating dietary iron absorption and body iron distribution. This 25-amino acid hormone is produced and secreted predominantly by hepatocytes. Hepcidin has been suggested as a promising diagnostic marker for iron-related disorders. However, its accurate quantification for clinical use remains so far challenging. In this report we describe a highly specific and quantitative serum hepcidin method using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). MATERIAL: The analytical validation included the determination of the limit of detection, of quantification, repeatability, reproducibility and linearity. This assay was developed for human and mouse hepcidin. The human assay was performed on serum patients with unexplained microcytic anemia. We applied our LC-MS/MS method for quantifying hepcidin-1 in mouse in various conditions: inflammation, hemolytic anemia, Hamp-1, Hjv and Hfe KO mice. RESULTS: We show that the LC-MS/MS is suitable for accurate determination of hepcidin-25 in clinical samples, thereby representing a useful tool for the clinical diagnosis and follow-up of iron-related diseases. In mouse, a strong correlation between hepatic Hamp-1 mRNA expression and serum hepcidin-1 levels was found (r=0.88; p=0.0002) and the expected variations in mouse models of iron disorders were observed. CONCLUSIONS: Therefore, we propose this adaptive LC-MS/MS method as a suitable method for accurate determination of hepcidin-25 in clinical samples and as a major tool contributing to the clinical diagnosis, follow-up and management of iron-related disorders. It also opens new avenues to measure hepcidin in animal models without interspecies antigenic limitations.


Assuntos
Anemia Ferropriva/sangue , Cromatografia Líquida/métodos , Hepcidinas/sangue , Espectrometria de Massas em Tandem/métodos , Adulto , Sequência de Aminoácidos , Animais , Feminino , Humanos , Ferro/sangue , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA