Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(9): e2208774, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36434806

RESUMO

Nanocomposite materials, consisting of two or more phases, at least one of which has a nanoscale dimension, play a distinctive role in materials science because of the multiple possibilities for tailoring their structural properties and, consequently, their functionalities. In addition to the challenges of controlling the size, size distribution, and volume fraction of nanometer phases, thermodynamic stability conditions limit the choice of constituent materials. This study goes beyond this limitation by showing the possibility of achieving nanocomposites from a bimetallic system, which exhibits complete miscibility under equilibrium conditions. A series of nanocomposite samples with different compositions are synthesized by the co-deposition of 2000-atom Ni-clusters and a flux of Cu-atoms using a novel cluster ion beam deposition system. The retention of the metastable nanostructure is ascertained from atom probe tomography (APT), magnetometry, and magnetotransport studies. APT confirms the presence of nanoscale regions with ≈100 at% Ni. Magnetometry and magnetotransport studies reveal superparamagnetic behavior and magnetoresistance stemming from the single-domain ferromagnetic Ni-clusters embedded in the Cu-matrix. Essentially, the magnetic properties of the nanocomposites can be tailored by the precise control of the Ni concentration. The initial results offer a promising direction for future research on nanocomposites consisting of fully miscible elements.

2.
Adv Mater ; 35(2): e2207436, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36383029

RESUMO

Technologically relevant strongly correlated phenomena such as colossal magnetoresistance (CMR) and metal-insulator transitions (MIT) exhibited by perovskite manganites are driven and enhanced by the coexistence of multiple competing magneto-electronic phases. Such magneto-electronic inhomogeneity is governed by the intrinsic lattice-charge-spin-orbital correlations, which, in turn, are conventionally tailored in manganites via chemical substitution, charge doping, or strain engineering. Alternately, the recently discovered high entropy oxides (HEOs), owing to the presence of multiple-principal cations on a given sub-lattice, exhibit indications of an inherent magneto-electronic phase separation encapsulated in a single crystallographic phase. Here, the high entropy (HE) concept is combined with standard property control by hole doping in a series of single-phase orthorhombic HE-manganites (HE-Mn), (Gd0.25 La0.25 Nd0.25 Sm0.25 )1- x Srx MnO3 (x = 0-0.5). High-resolution transmission microscopy reveals hitherto-unknown lattice imperfections in HEOs: twins, stacking faults, and missing planes. Magnetometry and electrical measurements infer three distinct ground states-insulating antiferromagnetic, unpercolated metallic ferromagnetic, and long-range metallic ferromagnetic-coexisting or/and competing as a result of hole doping and multi-cation complexity. Consequently, CMR ≈1550% stemming from an MIT is observed in polycrystalline pellets, matching the best-known values for bulk conventional manganites. Hence, this initial case study highlights the potential for a synergetic development of strongly correlated oxides offered by the high entropy design approach.

3.
Sci Rep ; 12(1): 5287, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347199

RESUMO

In this work, we demonstrate the high efficiency of optical emission spectroscopy to estimate the etching profile of silicon structures in SF6/C4F8/O2 plasma. The etching profile is evaluated as a ratio of the emission intensity of the oxygen line (778.1 nm) to the fluorine lines (685.8 nm and 703.9 nm). It was found that for the creation of directional structures with line sizes from 13 to 100 µm and aspect ratio from ≈ 0.15 to ≈ 5 the optimal intensities ratio is in the range of 2-6, and for structures from 400 to 4000 µm with aspect ratio from ≈ 0.03 to ≈ 0.37 it is in the range 1.5-2. Moreover, the influence of the process parameters on the etching rate of silicon, the etching rate of aluminum, the inclination angle of the profile wall of the etched window, the selectivity of silicon etching with respect to aluminum, and the influence on the overetching (Bowing effect) of the structure was investigated.

4.
Sci Rep ; 10(1): 19977, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203949

RESUMO

In this work, we demonstrate an effective way of deep (30 µm depth), highly oriented (90° sidewall angle) structures formation with sub-nanometer surface roughness (Rms = 0.7 nm) in silicon carbide (SiC). These structures were obtained by dry etching in SF6/O2 inductively coupled plasma (ICP) at increased substrate holder temperatures. It was shown that change in the temperature of the substrate holder in the range from 100 to 300 °C leads to a sharp decrease in the root mean square roughness from 153 to 0.7 nm. Along with this, it has been established that the etching rate of SiC also depends on the temperature of the substrate holder and reaches its maximum (1.28 µm/min) at temperatures close to 150 °C. Further temperature increase to 300 °C does not lead to the etching rate rising. The comparison of the results of the thermally stimulated process and the etching with a water-cooled substrate holder (15 °C) is carried out. Plasma optical emission spectroscopy was carried out at different temperatures of the substrate holder.

5.
Nanomaterials (Basel) ; 10(11)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153149

RESUMO

The combination of magnetic and semiconducting properties in one material system has great potential for integration of emerging spintronics with conventional semiconductor technology. One standard route for the synthesis of magnetic semiconductors is doping of semiconductors with magnetic atoms. In many semiconductor-magnetic-dopant systems, the magnetic atoms form precipitates within the semiconducting matrix. An alternative and controlled way to realize such nanocomposite materials is the assembly by co-deposition of size-selected cluster ions and a semiconductor. Here we follow the latter approach to demonstrate that this fabrication route can be used to independently study the influence of cluster concentration and cluster size on magneto-transport properties. In this case we study Fe clusters composed of approximately 500 or 1000 atoms soft-landed into a thermally evaporated amorphous Ge matrix. The analysis of field and temperature dependent transport shows that tunneling processes affected by Coulomb blockade dominate at low temperatures. The nanocomposites show saturating tunneling magnetoresistance, additionally superimposed by at least one other effect not saturating upon the maximum applied field of 6 T. The nanocomposites' resistivity and the observed tunneling magnetoresistance depend exponentially on the average distance between cluster surfaces. On the contrary, there is no notable influence of the cluster size on the tunneling magnetoresistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA