Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 86(11): 2435-2447, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37940359

RESUMO

An LC-MS/MS-guided analysis of the aerial parts of Glycyrrhiza foetida afforded new phenethyl (amorfrutin)- and alkyl (cannabis)-type phytocannabinoids (six and four compounds, respectively). The structural diversity of the new amorfrutins was complemented by the isolation of six known members and the synthesis of analogues modified on the aralkyl moiety. All of the compounds so obtained were assayed for agonist activity on PPARα and PPARγ nuclear receptors. Amorfrutin A (1) showed the highest agonist activity on PPARγ, amorfrutin H (7) selectively targeted PPARα, and amorfrutin E (4) behaved as a dual agonist, with the pentyl analogue of amorfrutin A (11) being inactive. Decarboxyamorfrutin A (2) was cytotoxic, and modifying its phenethyl moiety to a styryl or a phenylethynyl group retained this trait, suggesting an alternative biological scenario for these compounds. The putative binding modes of amorfrutins toward PPARα and PPARγ were obtained by a combined approach of molecular docking and molecular dynamics simulations, which provided insights on the structure-activity relationships of this class of compounds.


Assuntos
Glycyrrhiza , Glycyrrhiza/química , PPAR alfa/agonistas , PPAR gama/agonistas , Simulação de Acoplamento Molecular , Cromatografia Líquida , Espectrometria de Massas em Tandem , Componentes Aéreos da Planta , Estrutura Molecular
2.
Cell Death Dis ; 14(8): 544, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612317

RESUMO

Statins are the most prescribed lipid-lowering agents worldwide. Their use is generally safe, although muscular toxicity occurs in about 1 in 10.000 patients. In this study, we explored the role of the endocannabinoid system (ECS) during muscle toxicity induced by simvastatin. In murine C2C12 myoblasts exposed to simvastatin, levels of the endocannabinoids AEA and 2-AG as well the expression of specific miRNAs (in particular miR-152) targeting the endocannabinoid CB1 gene were increased in a time-dependent manner. Rimonabant, a selective CB1 antagonist, exacerbated simvastatin-induced toxicity in myoblasts, while only a weak opposite effect was observed with ACEA and GAT211, selective orthosteric and allosteric agonists of CB1 receptor, respectively. In antagomiR152-transfected myoblasts, simvastatin toxicity was in part prevented together with the functional rescue of CB1. Further analyses revealed that simvastatin in C2C12 cells also suppresses PKC and ERK signaling pathways, which are instead activated downstream of CB1 receptor stimulation, thus adding more insight into the mechanism causing CB1 functional inactivation. Importantly, simvastatin induced similar alterations in skeletal muscles of C57BL/6 J mice and primary human myoblasts. In sum, we identified the dysregulated expression of the endocannabinoid CB1 receptor as well as the impairment of its downstream signaling pathways as a novel pathological mechanism involved in statin-induced myopathy.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , MicroRNAs , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Sinvastatina/farmacologia , Endocanabinoides , Receptor CB1 de Canabinoide/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Músculo Esquelético
4.
Front Cell Neurosci ; 17: 1134130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138770

RESUMO

The endocannabinoid system (ECS) refers to a complex cell-signaling system highly conserved among species formed by numerous receptors, lipid mediators (endocannabinoids) and synthetic and degradative enzymes. It is widely distributed throughout the body including the CNS, where it participates in synaptic signaling, plasticity and neurodevelopment. Besides, the olfactory ensheathing glia (OEG) present in the olfactory system is also known to play an important role in the promotion of axonal growth and/or myelination. Therefore, both OEG and the ECS promote neurogenesis and oligodendrogenesis in the CNS. Here, we investigated if the ECS is expressed in cultured OEG, by assessing the main markers of the ECS through immunofluorescence, western blotting and qRT-PCR and quantifying the content of endocannabinoids in the conditioned medium of these cells. After that, we investigated whether the production and release of endocannabinoids regulate the differentiation of oligodendrocytes co-cultured with hippocampal neurons, through Sholl analysis in oligodendrocytes expressing O4 and MBP markers. Additionally, we evaluated through western blotting the modulation of downstream pathways such as PI3K/Akt/mTOR and ERK/MAPK, being known to be involved in the proliferation and differentiation of oligodendrocytes and activated by CB1, which is the major endocannabinoid responsive receptor in the brain. Our data show that OEG expresses key genes of the ECS, including the CB1 receptor, FAAH and MAGL. Besides, we were able to identify AEA, 2-AG and AEA related mediators palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), in the conditioned medium of OEG cultures. These cultures were also treated with URB597 10-9 M, a FAAH selective inhibitor, or JZL184 10-9 M, a MAGL selective inhibitor, which led to the increase in the concentrations of OEA and 2-AG in the conditioned medium. Moreover, we found that the addition of OEG conditioned medium (OEGCM) enhanced the complexity of oligodendrocyte process branching in hippocampal mixed cell cultures and that this effect was inhibited by AM251 10-6 M, a CB1 receptor antagonist. However, treatment with the conditioned medium enriched with OEA or 2-AG did not alter the process branching complexity of premyelinating oligodendrocytes, while decreased the branching complexity in mature oligodendrocytes. We also observed no change in the phosphorylation of Akt and ERK 44/42 in any of the conditions used. In conclusion, our data show that the ECS modulates the number and maturation of oligodendrocytes in hippocampal mixed cell cultures.

5.
Biofactors ; 49(4): 887-899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37092955

RESUMO

Preeclampsia (PE) was first reported thousands of years ago, yet there is still a shortage of biomarkers to determine the severity and type of PE. The importance of the expanded endocannabinoid system, or endocannabinoidome (eCBome), has emerged recently in placental physiology and pathology, though the potential alterations of the eCBome in PE have not been fully explored. Analysis by qRT-PCR using placental samples of normotensive and PE women demonstrate for the first time the presence of ABHD4, GDE1, and DAGLß in both normotensive and PE placental tissues. Interestingly, NAPE-PLD, FAAH-1, DAGLα, MAGL, and ABHD6 mRNA levels were increased in the placental tissues of PE patients. Quantification in plasma and placental tissues showed a decrease for anandamide (AEA), N-oleoylethanolamine (OEA), and N-docosahexaenoylethanolamine (DHEA) in the placenta, accompanied only by a decrease in plasma levels of AEA. In addition, a strong negative correlation was obtained between OEA and the biomarker of PE, soluble fms-like tyrosine kinase-1. Given the inflammatory nature of PE and the anti-inflammatory role of OEA and DHEA, the decrease in the local levels of these mediators may underlie the inflammatory component of this pathology. Additionally, lower AEA levels in both placenta and plasma may contribute to the atypical alterations of the spiral arteries in PE due to the vasorelaxation effects of AEA. These results add new information to the role of the eCBome members in placental development, while also pointing to a potential role as biomarkers of PE.


Assuntos
Placenta , Pré-Eclâmpsia , Humanos , Gravidez , Feminino , Placenta/patologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Biomarcadores , Placentação , Desidroepiandrosterona
6.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835313

RESUMO

Adolescent exposure to cannabinoids as a postnatal environmental insult may increase the risk of psychosis in subjects exposed to perinatal insult, as suggested by the two-hit hypothesis of schizophrenia. Here, we hypothesized that peripubertal Δ9-tetrahydrocannabinol (aTHC) may affect the impact of prenatal methylazoxymethanol acetate (MAM) or perinatal THC (pTHC) exposure in adult rats. We found that MAM and pTHC-exposed rats, when compared to the control group (CNT), were characterized by adult phenotype relevant to schizophrenia, including social withdrawal and cognitive impairment, as revealed by social interaction test and novel object recognition test, respectively. At the molecular level, we observed an increase in cannabinoid CB1 receptor (Cnr1) and/or dopamine D2/D3 receptor (Drd2, Drd3) gene expression in the prefrontal cortex of adult MAM or pTHC-exposed rats, which we attributed to changes in DNA methylation at key regulatory gene regions. Interestingly, aTHC treatment significantly impaired social behavior, but not cognitive performance in CNT groups. In pTHC rats, aTHC did not exacerbate the altered phenotype nor dopaminergic signaling, while it reversed cognitive deficit in MAM rats by modulating Drd2 and Drd3 gene expression. In conclusion, our results suggest that the effects of peripubertal THC exposure may depend on individual differences related to dopaminergic neurotransmission.


Assuntos
Dronabinol , Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia , Animais , Feminino , Humanos , Gravidez , Ratos , Modelos Animais de Doenças , Dopamina/metabolismo , Dronabinol/toxicidade , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Receptores de Dopamina D3/metabolismo , Esquizofrenia/induzido quimicamente
7.
EMBO Mol Med ; 15(3): e16225, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36594243

RESUMO

Nothing is known about the potential implication of gut microbiota in skeletal muscle disorders. Here, we provide evidence that fecal microbiota composition along with circulating levels of short-chain fatty acids (SCFAs) and related metabolites are altered in the mdx mouse model of Duchenne muscular dystrophy (DMD) compared with healthy controls. Supplementation with sodium butyrate (NaB) in mdx mice rescued muscle strength and autophagy, and prevented inflammation associated with excessive endocannabinoid signaling at CB1 receptors to the same extent as deflazacort (DFZ), the standard palliative care for DMD. In LPS-stimulated C2C12 myoblasts, NaB reduces inflammation, promotes autophagy, and prevents dysregulation of microRNAs targeting the endocannabinoid CB1 receptor gene, in a manner depending on the activation of GPR109A and PPARγ receptors. In sum, we propose a novel disease-modifying approach in DMD that may have benefits also in other muscular dystrophies.


Assuntos
Distrofia Muscular de Duchenne , Animais , Camundongos , Autofagia , Disbiose , Endocanabinoides/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Intestinos
8.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203407

RESUMO

Neuromuscular disorders (NMDs) encompass a large heterogeneous group of hereditary and acquired diseases primarily affecting motor neurons, peripheral nerves, and the skeletal muscle system. The symptoms of NMDs may vary depending on the specific condition, but some of the most common ones include muscle weakness, pain, paresthesias, and hyporeflexia, as well as difficulties with swallowing and breathing. NMDs are currently untreatable. Therapeutic options include symptomatic and experimental medications aimed at delaying and alleviating symptoms, in some cases supplemented by surgical and physical interventions. To address this unmet medical need, ongoing research is being conducted on new treatments, including studies on medical cannabis, endocannabinoids, and related molecules with cannabimimetic properties. In this context, a significant amount of knowledge about the safety and effectiveness of cannabinoids in NMDs has been obtained from studies involving patients with multiple sclerosis experiencing pain and spasticity. In recent decades, numerous other preclinical and clinical studies have been conducted to determine the potential benefits of cannabinoids in NMDs. This review article aims to summarize and provide an unbiased point of view on the current knowledge about the use of cannabinoids, endocannabinoids, and synthetic analogs in NMDs, drawing from an array of compelling studies.


Assuntos
Canabinoides , Esclerose Múltipla , Doenças Neuromusculares , Humanos , Endocanabinoides , Canabinoides/uso terapêutico , Doenças Neuromusculares/tratamento farmacológico , Dor
9.
Front Aging Neurosci ; 14: 926634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313013

RESUMO

N-oleoylglycine (OlGly) is a lipid mediator that belongs to the expanded version of the endocannabinoid (eCB) system, the endocannabinoidome (eCBome), which has recently gained increasing attention from the scientific community for its protective effects in a mouse model of mild traumatic brain injury. However, the effects of OlGly on cellular models of Parkinson's disease (PD) have not yet been investigated, whilst other lipoaminoacids have been reported to have beneficial effects. Moreover, the protective effects of OlGly seem to be mediated by direct activation of proliferator-activated receptor alpha (PPARα), which has already been investigated as a therapeutic target for PD. Therefore, this study aims to investigate the possible protective effects of OlGly in an in vitro model obtained by treating the neuroblastoma cell line, SH-SY5Y (both differentiated and not) with 1-methyl-4-phenyl-pyridinium (MPP+), which mimics some cellular aspects of a PD-like phenotype, in the presence or absence of the PPARα antagonist, GW6471. Our data show that MPP+ increases mRNA levels of PPARα in both non differentiated and differentiated cells. Using assays to assess cell metabolic activity, cell proliferation, and pro-inflammatory markers, we observed that OlGly (1 nM), both as treatment (1 h) and pre-treatment (4 h), is able to protect against neuronal damage induced by 24 h MPP+ exposure through PPARα. Moreover, using a targeted lipidomics approach, we demonstrate that OlGly exerts its effects also through the modulation of the eCBome. Finally, treatment with OlGly was able also to reduce increased IL-1ß induced by MPP+ in differentiated cells. In conclusion, our results suggest that OlGly could be a promising therapeutic agent for the treatment of MPP+-induced neurotoxicity.

10.
Biomolecules ; 12(1)2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35053256

RESUMO

In agreement with the neurodevelopmental hypothesis of schizophrenia, prenatal exposure of Sprague-Dawley rats to the antimitotic agent methylazoxymethanol acetate (MAM) at gestational day 17 produces long-lasting behavioral alterations such as social withdrawal and cognitive impairment in adulthood, mimicking a schizophrenia-like phenotype. These abnormalities were preceded at neonatal age both by the delayed appearance of neonatal reflexes, an index of impaired brain maturation, and by higher 2-arachidonoylglycerol (2-AG) brain levels. Schizophrenia-like deficits were reversed by early treatment [from postnatal day (PND) 2 to PND 8] with the CB1 antagonist/inverse agonist AM251 (0.5 mg/kg/day). By contrast, early CB1 blockade affected the behavioral performance of control rats which was paralleled by enhanced 2-AG content in the prefrontal cortex (PFC). These results suggest that prenatal MAM insult leads to premorbid anomalies at neonatal age via altered tone of the endocannabinoid system, which may be considered as an early marker preceding the development of schizophrenia-like alterations in adulthood.


Assuntos
Acetato de Metilazoximetanol , Esquizofrenia , Animais , Modelos Animais de Doenças , Feminino , Gravidez , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética
11.
Biomolecules ; 13(1)2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36671418

RESUMO

Acute respiratory distress syndrome (ARDS) is a serious inflammatory lung disorder and a complication of SARS-CoV-2 infection. In patients with severe SARS-CoV-2 infection, the transition to ARDS is principally due to the occurrence of a cytokine storm and an exacerbated inflammatory response. The effectiveness of ultra-micronized palmitoylethanolamide (PEA-um) during the earliest stage of COVID-19 has already been suggested. In this study, we evaluated its protective effects as well as the effectiveness of its congener, 2-pentadecyl-2-oxazoline (PEA-OXA), using in vitro models of acute lung injury. In detail, human lung epithelial cells (A549) activated by polyinosinic-polycytidylic acid (poly-(I:C)) or Transforming Growth Factor-beta (TGF-ß) were treated with PEA-OXA or PEA. The release of IL-6 and the appearance of Epithelial-Mesenchymal Transition (EMT) were measured by ELISA and immunofluorescence assays, respectively. A possible mechanism of action for PEA-OXA and PEA was also investigated. Our results showed that both PEA-OXA and PEA were able to counteract poly-(I:C)-induced IL-6 release, as well as to revert TGF-ß-induced EMT. In addition, PEA was able to produce an "entourage" effect on the levels of the two endocannabinoids AEA and 2-AG, while PEA-OXA only increased PEA endogenous levels, in poly-(I:C)-stimulated A549 cells. These results evidence for the first time the superiority of PEA-OXA over PEA in exerting protective effects and point to PEA-OXA as a new promising candidate in the management of acute lung injury.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Humanos , Interleucina-6 , SARS-CoV-2 , Fator de Crescimento Transformador beta , Lesão Pulmonar Aguda/tratamento farmacológico
12.
Nat Commun ; 12(1): 6137, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675233

RESUMO

The mammalian brain stores and distinguishes among episodic memories, i.e. memories formed during the personal experience, through a mechanism of pattern separation computed in the hippocampal dentate gyrus. Decision-making for food-related behaviors, such as the choice and intake of food, might be affected in obese subjects by alterations in the retrieval of episodic memories. Adult neurogenesis in the dentate gyrus regulates the pattern separation. Several molecular factors affect adult neurogenesis and exert a critical role in the development and plasticity of newborn neurons. Orexin-A/hypocretin-1 and downstream endocannabinoid 2-arachidonoylglycerol signaling are altered in obese mice. Here, we show that excessive orexin-A/2-arachidonoylglycerol/cannabinoid receptor type-1 signaling leads to the dysfunction of adult hippocampal neurogenesis and the subsequent inhibition of plasticity and impairment of pattern separation. By inhibiting orexin-A action at orexin-1 receptors we rescued both plasticity and pattern separation impairment in obese mice, thus providing a molecular and functional mechanism to explain alterations in episodic memory in obesity.


Assuntos
Endocanabinoides/metabolismo , Hipocampo/crescimento & desenvolvimento , Neurogênese , Plasticidade Neuronal , Obesidade/metabolismo , Obesidade/psicologia , Orexinas/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Humanos , Masculino , Memória Episódica , Camundongos , Camundongos Obesos , Neurônios/citologia , Neurônios/metabolismo , Obesidade/genética , Obesidade/fisiopatologia , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais
13.
Biomolecules ; 11(8)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34439801

RESUMO

The potential, multifaceted therapeutic profile of cannabidiol (CBD), a major constituent derived from the Cannabis sativa plant, covers a wide range of neurological and psychiatric disorders, ranging from anxiety to pediatric epilepsy and drug addiction. However, the molecular targets responsible for these effects have been only partially identified. In this view, the involvement of the orexin system, the key regulator in arousal and the sleep/wake cycle, and in motivation and reward processes, including drug addiction, prompted us to explore, using computational and experimental approaches, the possibility that CBD could act as a ligand of orexin receptors, orexin 1 receptor of type 1 (OX1R) and type 2 (OX2R). Ligand-binding assays showed that CBD is a selective ligand of OX1R in the low micromolar range (Ki 1.58 ± 0.2 µM) while in vitro functional assays, carried out by intracellular calcium imaging and mobilization assays, showed that CBD acts as an antagonist at this receptor. Finally, the putative binding mode of CBD has been inferred by molecular docking and molecular dynamics simulations and its selectivity toward the OX1R subtype rationalized at the molecular level. This study provides the first evidence that CBD acts as an OX1R antagonist, supporting its potential use in addictive disorders and/or body weight regulation.


Assuntos
Ansiolíticos/farmacologia , Anticonvulsivantes/farmacologia , Canabidiol/farmacologia , Receptores de Orexina/química , Orexinas/química , Animais , Ansiolíticos/química , Ansiolíticos/metabolismo , Anticonvulsivantes/química , Anticonvulsivantes/metabolismo , Sítios de Ligação , Células CHO , Cálcio/metabolismo , Canabidiol/química , Canabidiol/metabolismo , Cricetulus , Expressão Gênica , Humanos , Cinética , Simulação de Acoplamento Molecular , Imagem Molecular , Antagonistas dos Receptores de Orexina , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Ensaio Radioligante , Transgenes
14.
Int J Mol Sci ; 22(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34062987

RESUMO

Cannabidiol (CBD), the major nonpsychoactive Cannabis constituent, has been proposed for the treatment of a wide panel of neurological and neuropsychiatric disorders, including anxiety, schizophrenia, epilepsy and drug addiction due to the ability of its versatile scaffold to interact with diverse molecular targets that are not restricted to the endocannabinoid system. Albeit the molecular mechanisms responsible for the therapeutic effects of CBD have yet to be fully elucidated, many efforts have been devoted in the last decades to shed light on its complex pharmacological profile. In particular, an ever-increasing number of molecular targets linked to those disorders have been identified for this phytocannabinoid, along with the modulatory effects of CBD on their cascade signaling. In this view, here we will try to provide a comprehensive and up-to-date overview of the molecular basis underlying the therapeutic effects of CBD involved in the treatment of neurological and neuropsychiatric disorders.


Assuntos
Canabidiol/uso terapêutico , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/genética , Terapia de Alvo Molecular , Animais , Canabidiol/química , Canabidiol/farmacologia , Humanos , Canais Iônicos/metabolismo , Modelos Moleculares
15.
J Nutr Biochem ; 96: 108782, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34038760

RESUMO

Omega-3 (n-3) polyunsaturated fatty acids (PUFA) and the endocannabinoid system (ECS) modulate several functions through neurodevelopment including synaptic plasticity mechanisms. The interplay between n-3PUFA and the ECS during the early stages of development, however, is not fully understood. This study investigated the effects of maternal n-3PUFA supplementation (n-3Sup) or deficiency (n-3Def) on ECS and synaptic markers in postnatal offspring. Female rats were fed with a control, n-3Def, or n-3Sup diet from 15 days before mating and during pregnancy. The cerebral cortex and hippocampus of mothers and postnatal 1-2 days offspring were analyzed. In the mothers, a n-3 deficiency reduced CB1 receptor (CB1R) protein levels in the cortex and increased CB2 receptor (CB2R) in both cortex and hippocampus. In neonates, a maternal n-3 deficiency reduced the hippocampal CB1R amount while it increased CB2R. Additionally, total GFAP isoform expression was increased in both cortex and hippocampus in neonates of the n-3Def group. Otherwise, maternal n-3 supplementation increased the levels of n-3-derived endocannabinoids, DHEA and EPEA, in the cortex and hippocampus and reduced 2-arachidonoyl-glycerol (2-AG) concentrations in the cortex of the offspring. Furthermore, maternal n-3 supplementation also increased PKA phosphorylation in the cortex and ERK phosphorylation in the hippocampus. Synaptophysin immunocontent in both regions was also increased. In vitro assays showed that the increase of synaptophysin in the n-3Sup group was independent of CB1R activation. The findings show that variations in maternal dietary omega-3 PUFA levels may impact differently on the ECS and molecular markers in the cerebral cortex and hippocampus of the progeny.


Assuntos
Endocanabinoides/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Hipocampo/fisiologia , Neocórtex/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Dieta , Feminino , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Ratos , Sinapses/metabolismo
16.
Cells ; 10(3)2021 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799988

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors including PPARα, PPARγ, and PPARß/δ, acting as transcription factors to regulate the expression of a plethora of target genes involved in metabolism, immune reaction, cell differentiation, and a variety of other cellular changes and adaptive responses. PPARs are activated by a large number of both endogenous and exogenous lipid molecules, including phyto- and endo-cannabinoids, as well as endocannabinoid-like compounds. In this view, they can be considered an extension of the endocannabinoid system. Besides being directly activated by cannabinoids, PPARs are also indirectly modulated by receptors and enzymes regulating the activity and metabolism of endocannabinoids, and, vice versa, the expression of these receptors and enzymes may be regulated by PPARs. In this review, we provide an overview of the crosstalk between cannabinoids and PPARs, and the importance of their reciprocal regulation and modulation by common ligands, including those belonging to the extended endocannabinoid system (or "endocannabinoidome") in the control of major physiological and pathophysiological functions.


Assuntos
Endocanabinoides/metabolismo , PPAR alfa/genética , PPAR delta/genética , PPAR gama/genética , PPAR beta/genética , Receptores de Canabinoides/genética , Animais , Regulação da Expressão Gênica , Humanos , Ligantes , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Knockout , Modelos Moleculares , PPAR alfa/química , PPAR alfa/metabolismo , PPAR delta/química , PPAR delta/metabolismo , PPAR gama/química , PPAR gama/metabolismo , PPAR beta/química , PPAR beta/metabolismo , Receptores de Canabinoides/química , Receptores de Canabinoides/metabolismo , Transdução de Sinais , Transcrição Gênica
18.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540826

RESUMO

Toll-like receptors (TLRs) are key receptors through which infectious and non-infectious challenges act with consequent activation of the inflammatory cascade that plays a critical function in various acute and chronic diseases, behaving as amplification and chronicization factors of the inflammatory response. Previous studies have shown that synthetic analogues of lipid A based on glucosamine with few chains of unsaturated and saturated fatty acids, bind MD-2 and inhibit TLR4 receptors. These synthetic compounds showed antagonistic activity against TLR4 activation in vitro by LPS, but little or no activity in vivo. This study aimed to show the potential use of N-palmitoyl-D-glucosamine (PGA), a bacterial molecule with structural similarity to the lipid A component of LPS, which could be useful for preventing LPS-induced tissue damage or even peripheral neuropathies. Molecular docking and molecular dynamics simulations showed that PGA stably binds MD-2 with a MD-2/(PGA)3 stoichiometry. Treatment with PGA resulted in the following effects: (i) it prevented the NF-kB activation in LPS stimulated RAW264.7 cells; (ii) it decreased LPS-induced keratitis and corneal pro-inflammatory cytokines, whilst increasing anti-inflammatory cytokines; (iii) it normalized LPS-induced miR-20a-5p and miR-106a-5p upregulation and increased miR-27a-3p levels in the inflamed corneas; (iv) it decreased allodynia in peripheral neuropathy induced by oxaliplatin or formalin, but not following spared nerve injury of the sciatic nerve (SNI); (v) it prevented the formalin- or oxaliplatin-induced myelino-axonal degeneration of sciatic nerve. SIGNIFICANCE STATEMENT We report that PGA acts as a TLR4 antagonist and this may be the basis of its potent anti-inflammatory activity. Being unique because of its potency and stability, as compared to other similar congeners, PGA can represent a tool for the optimization of new TLR4 modulating drugs directed against the cytokine storm and the chronization of inflammation.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Glicolipídeos/uso terapêutico , Hiperalgesia/prevenção & controle , Ceratite/tratamento farmacológico , Neuralgia/tratamento farmacológico , Receptor 4 Toll-Like/antagonistas & inibidores , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Glicolipídeos/farmacologia , Células HEK293 , Humanos , Hiperalgesia/etiologia , Ceratite/induzido quimicamente , Ceratite/patologia , Lipopolissacarídeos/toxicidade , Antígeno 96 de Linfócito/metabolismo , Masculino , Camundongos , MicroRNAs/genética , Modelos Moleculares , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Conformação Proteica , Células RAW 264.7 , Distribuição Aleatória , Nervo Isquiático/lesões , Canal de Cátion TRPA1/metabolismo
19.
Mol Brain ; 14(1): 28, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557888

RESUMO

Neuropathic pain (NP) remains an untreatable disease due to the complex pathophysiology that involves the whole pain neuraxis including the forebrain. Sensory dysfunctions such as allodynia and hyperalgesia are only part of the symptoms associated with neuropathic pain that extend to memory and affectivity deficits. The development of multi-target molecules might be a promising therapeutic strategy against the symptoms associated with NP. 2-pentadecyl-2-oxazoline (PEA-OXA) is a plant-derived agent, which has shown effectiveness against chronic pain and associated neuropsychiatric disorders. The molecular mechanisms by which PEA-OXA exerts its effects are, however, only partially known. In the current study, we show that PEA-OXA, besides being an alpha2 adrenergic receptor antagonist, also acts as a modulator at histamine H3 receptors, and report data on its effects on sensory, affective and cognitive symptoms associated with the spared nerve injury (SNI) model of neuropathic pain in mice. Treatment for 14 days with PEA-OXA after the onset of the symptoms associated with neuropathic pain resulted in the following effects: (i) allodynia was decreased; (ii) affective/cognitive impairment associated with SNI (depression, spatial, and working memories) was counteracted; (iii) long-term potentiation in vivo in the lateral entorhinal cortex-dentate gyrus (perforant pathway, LPP) was ameliorated, (iv) hippocampal glutamate, GABA, histamine, norepinephrine and dopamine level alterations after peripheral nerve injury were reversed, (v) expression level of the TH positive neurons in the Locus Coeruleus were normalized. Thus, a 16-day treatment with PEA-OXA alleviates the sensory, emotional, cognitive, electrophysiological and neurochemical alterations associated with SNI-induced neuropathic pain.


Assuntos
Comportamento Animal , Depressão/complicações , Transtornos da Memória/complicações , Transtornos da Memória/tratamento farmacológico , Neuralgia/tratamento farmacológico , Oxazóis/uso terapêutico , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Histamínicos H3/metabolismo , Sequência de Aminoácidos , Animais , Ansiedade/complicações , Ansiedade/fisiopatologia , Células COS , Chlorocebus aethiops , Cognição/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Giro Denteado/fisiopatologia , Depressão/tratamento farmacológico , Depressão/fisiopatologia , Córtex Entorrinal/efeitos dos fármacos , Córtex Entorrinal/metabolismo , Córtex Entorrinal/fisiopatologia , Ácido Glutâmico/metabolismo , Humanos , Hiperalgesia/complicações , Hiperalgesia/fisiopatologia , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Neuralgia/metabolismo , Norepinefrina/metabolismo , Oxazóis/farmacologia , Receptores Histamínicos H3/química , Homologia Estrutural de Proteína , Ácido gama-Aminobutírico/metabolismo
20.
Cells ; 10(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477821

RESUMO

Akkermansia muciniphila is considered as one of the next-generation beneficial bacteria in the context of obesity and associated metabolic disorders. Although a first proof-of-concept of its beneficial effects has been established in the context of metabolic syndrome in humans, mechanisms are not yet fully understood. This study aimed at deciphering whether the bacterium exerts its beneficial properties through the modulation of the endocannabinoidome (eCBome). Circulating levels of 25 endogenous endocannabinoid-related lipids were quantified by liquid chromatography with tandem mass spectrometry (LC-MS/MS) in the plasma of overweight or obese individuals before and after a 3 months intervention consisting of the daily ingestion of either alive or pasteurized A. muciniphila. Results from multivariate analyses suggested that the beneficial effects of A. muciniphila were not linked to an overall modification of the eCBome. However, subsequent univariate analysis showed that the decrease in 1-Palmitoyl-glycerol (1-PG) and 2-Palmitoyl-glycerol (2-PG), two eCBome lipids, observed in the placebo group was significantly counteracted by the alive bacterium, and to a lower extent by the pasteurized form. We also discovered that 1- and 2-PG are endogenous activators of peroxisome proliferator-activated receptor alpha (PPARα). We hypothesize that PPARα activation by mono-palmitoyl-glycerols may underlie part of the beneficial metabolic effects induced by A. muciniphila in human metabolic syndrome.


Assuntos
Endocanabinoides/sangue , Síndrome Metabólica , Monoglicerídeos/sangue , Obesidade , PPAR alfa , Adulto , Akkermansia , Animais , Células COS , Chlorocebus aethiops , Feminino , Humanos , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/terapia , Obesidade/sangue , Obesidade/terapia , PPAR alfa/agonistas , PPAR alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA