Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Innovation (Camb) ; 5(1): 100550, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38204586

RESUMO

The remote forcing from land surface changes in the Sahara is hypothesized to play a pivotal role in modulating the intensity of the East Asian summer monsoon (EASM) through ocean-atmospheric teleconnections. This modulation has far-reaching consequences, particularly in facilitating societal shifts documented in northern China. Here, we present a well-dated lake-level record from the Daihai Lake Basin in northern China, providing quantitative assessments of Holocene monsoonal precipitation and the consequent migrations of the northern boundary of the EASM. Our reconstruction, informed by a water-and-energy balance model, indicates that annual precipitation reached ∼700 mm during 8-5 ka, followed by a rapid decline to ∼550 mm between 5 and 4 ka. This shift coherently aligns with a significant ∼300 km northwestward movement of the EASM northern boundary during the Middle Holocene (MH), in contrast to its current position. Our findings underscore that these changes cannot be entirely attributed to orbital forcing, as corroborated by simulation tests. Climate model simulations deployed in our study suggest that the presence of the Green Sahara during the MH significantly strengthened the EASM and led to a northward shift of the monsoon rainfall belt. Conversely, the Sahara's reversion to a desert landscape in the late Holocene was accompanied by a corresponding southward retraction of monsoon influence. These dramatic hydroclimate changes during ∼5-4 ka likely triggered or at least contributed to a shift in Neolithic cultures and societal transformation in northern China. With decreasing agricultural productivity, communities transitioned from millet farming to a mixed rainfed agriculture and animal husbandry system. Thus, our findings elucidate not only the variability of the EASM but also the profound implications of a remote forcing, such as surface transformations of the Sahara, on climatic changes and cultural evolution in northern China.

2.
Proc Natl Acad Sci U S A ; 120(46): e2306736120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931112

RESUMO

Photorespiration can limit gross primary productivity in terrestrial plants. The rate of photorespiration relative to carbon fixation increases with temperature and decreases with atmospheric [CO2]. However, the extent to which this rate varies in the environment is unclear. Here, we introduce a proxy for relative photorespiration rate based on the clumped isotopic composition of methoxyl groups (R-O-CH3) in wood. Most methoxyl C-H bonds are formed either during photorespiration or the Calvin cycle and thus their isotopic composition may be sensitive to the mixing ratio of these pathways. In water-replete growing conditions, we find that the abundance of the clumped isotopologue 13CH2D correlates with temperature (18-28 °C) and atmospheric [CO2] (280-1000 ppm), consistent with a common dependence on relative photorespiration rate. When applied to a global dataset of wood, we observe global trends of isotopic clumping with climate and water availability. Clumped isotopic compositions are similar across environments with temperatures below ~18 °C. Above ~18 °C, clumped isotopic compositions in water-limited and water-replete trees increasingly diverge. We propose that trees from hotter climates photorespire substantially more than trees from cooler climates. How increased photorespiration is managed depends on water availability: water-replete trees export more photorespiratory metabolites to lignin whereas water-limited trees either export fewer overall or direct more to other sinks that mitigate water stress. These disparate trends indicate contrasting responses of photorespiration rate (and thus gross primary productivity) to a future high-[CO2] world. This work enables reconstructing photorespiration rates in the geologic past using fossil wood.

3.
Geobiology ; 21(1): 86-101, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35949039

RESUMO

Evolution of high-productivity angiosperms has been regarded as a driver of Mesozoic ecosystem restructuring. However, terrestrial productivity is limited by availability of rock-derived nutrients such as phosphorus for which permanent increases in weathering would violate mass balance requirements of the long-term carbon cycle. The potential reality of productivity increases sustained since the Mesozoic is supported here with documentation of a dramatic increase in the evolution of nitrogen-fixing or nitrogen-scavenging symbioses, including more than 100 lineages of ectomycorrhizal and lichen-forming fungi and plants with specialized microbial associations. Given this evidence of broadly increased nitrogen availability, we explore via carbon cycle modeling how enhanced phosphorus availability might be sustained without violating mass balance requirements. Volcanism is the dominant carbon input, dictating peaks in weathering outputs up to twice modern values. However, times of weathering rate suppression may be more important for setting system behavior, and the late Paleozoic was the only extended period over which rates are expected to have remained lower than modern. Modeling results are consistent with terrestrial organic matter deposition that accompanied Paleozoic vascular plant evolution having suppressed weathering fluxes by providing an alternative sink of atmospheric CO2 . Suppression would have then been progressively lifted as the crustal reservoir's holding capacity for terrestrial organic matter saturated back toward steady state with deposition of new organic matter balanced by erosion of older organic deposits. Although not an absolute increase, weathering fluxes returning to early Paleozoic conditions would represent a novel regime for the complex land biota that evolved in the interim. Volcanism-based peaks in Mesozoic weathering far surpass the modern rates that sustain a complex diversity of nitrogen-based symbioses; only in the late Paleozoic might these ecologies have been suppressed by significantly lower rates. Thus, angiosperms are posited to be another effect rather than proximal cause of Mesozoic upheaval.


Assuntos
Ecossistema , Fósforo , Simbiose , Nitrogênio , Carbono
4.
New Phytol ; 237(5): 1550-1557, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36484141

RESUMO

The terrestrial biota is a crucial part of the long-term carbon cycle via the deposition of biomass as coal and other sedimentary organic matter and the impact of plants, fungi, and microbial life on the weathering of silicate minerals. Understanding these processes and their changes through time requires both geochemical modeling of the system as well as expertise in the living and fossil biotas and their ecological interactions, but details of these components are often lost in translation between disciplines. Here, we highlight misconceptions of the long-term carbon cycle that most frequently infiltrate the literature and hamper progress: mass balance requirements, the nature and duration of perturbations, opposing timescale constraints on biological and geological processes, and the role of models.


Assuntos
Minerais , Silicatos , Plantas , Biomassa , Ciclo do Carbono , Carbono
5.
Nat Commun ; 13(1): 5428, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109505

RESUMO

Ice cores and offshore sedimentary records demonstrate enhanced ice loss along Antarctic coastal margins during millennial-scale warm intervals within the last glacial termination. However, the distal location and short temporal coverage of these records leads to uncertainty in both the spatial footprint of ice loss, and whether millennial-scale ice response occurs outside of glacial terminations. Here we present a >100kyr archive of periodic transitions in subglacial precipitate mineralogy that are synchronous with Late Pleistocene millennial-scale climate cycles. Geochemical and geochronologic data provide evidence for opal formation during cold periods via cryoconcentration of subglacial brine, and calcite formation during warm periods through the addition of subglacial meltwater originating from the ice sheet interior. These freeze-flush cycles represent cyclic changes in subglacial hydrologic-connectivity driven by ice sheet velocity fluctuations. Our findings imply that oscillating Southern Ocean temperatures drive a dynamic response in the Antarctic ice sheet on millennial timescales, regardless of the background climate state.

8.
Sci Adv ; 7(28)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34244143

RESUMO

Earth's climate system is complex and inherently nonlinear, which can induce some extraneous cycles in paleoclimatic proxies at orbital time scales. The paleoenvironmental consequences of these extraneous cycles are debated owing to their complex origin. Here, we compile high-resolution datasets of total organic carbon (TOC) and stable carbon isotope (δ13Corg) datasets to investigate organic carbon burial processes in middle to high latitudes. Our results document a robust cyclicity of ~173 thousand years (ka) in both TOC and δ13Corg The ~173-ka obliquity-related forcing signal was amplified by internal climate feedbacks of the carbon cycle under different geographic and climate conditions, which control a series of sensitive climatic processes. In addition, our new and compiled records from multiple proxies confirm the presence of the obliquity amplitude modulation (AM) cycle during the Mesozoic and Cenozoic and indicate the usefulness of the ~173-ka cycle as geochronometer and for paleoclimatic interpretation.

9.
Nature ; 571(7763): 99-102, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31270485

RESUMO

The long-term cooling, decline in the partial pressure of carbon dioxide, and the establishment of permanent polar ice sheets during the Neogene period1,2 have frequently been attributed to increased uplift and erosion of mountains and consequent increases in silicate weathering, which removes atmospheric carbon dioxide3,4. However, geological records of erosion rates are potentially subject to averaging biases5,6, and the magnitude of the increase in weathering fluxes-and even its existence-remain debated7-9. Moreover, an increase in weathering scaled to the proposed erosional increase would have removed nearly all carbon from the atmosphere10, which has led to suggestions of compensatory carbon fluxes11-13 in order to preserve mass balance in the carbon cycle. Alternatively, an increase in land surface reactivity-resulting from greater fresh-mineral surface area or an increase in the supply of reactive minerals-rather than an increase in the weathering flux, has been proposed to reconcile these disparate views8,9. Here we use a parsimonious carbon cycle model that tracks two weathering-sensitive isotopic tracers (stable 7Li/6Li and cosmogenic 10Be/9Be) to show that an increase in land surface reactivity is necessary to simultaneously decrease atmospheric carbon dioxide, increase seawater 7Li/6Li and retain constant seawater 10Be/9Be over the past 16 million years. We find that the global silicate weathering flux remained constant, even as the global silicate weathering intensity-the fraction of the total denudation flux that is derived from silicate weathering-decreased, sustained by an increase in erosion. Long-term cooling during the Neogene thus reflects a change in the partitioning of denudation into weathering and erosion. Variable partitioning of denudation and consequent changes in silicate weathering intensity reconcile marine isotope and erosion records with the need to maintain mass balance in the carbon cycle and without requiring increases in the silicate weathering flux.


Assuntos
Atmosfera/química , Ciclo do Carbono , Dióxido de Carbono/análise , Dióxido de Carbono/história , Temperatura Baixa , Sedimentos Geológicos/química , Geologia/história , Retroalimentação , Sedimentos Geológicos/análise , História Antiga , Camada de Gelo/química , Modelos Teóricos , Rios/química , Água do Mar/química , Silicatos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA