Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Breast Cancer ; 2022: 2442109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268271

RESUMO

The aim of this study is to investigate the single nucleotide polymorphisms (SNPs) associated with breast cancer in our population of Arab patients. We investigated 26 breast cancer patients and an equal number of healthy age- and sex-matched control volunteers. We examined the exome wide microarray-based biomarkers and screened 243,345 SNPs for their possible significant association with our breast cancer patients. Successfully, we identified the most significant (p value ≤9.14 × 10-09) four associated SNPs [SNRK and SNRK-AS1-rs202018563G; BRCA2-rs2227943C; ZNF484-rs199826847C; and DCPS-rs1695739G] among persons with breast cancer versus the healthy controls even after Bonferroni corrections (p value <2.05 × 10-07). Although our patients' numbers were limited, the identified SNPs might shed some light on certain breast cancer-associated functional multigenic variations in Arab patients. We assert on the importance of more extensive large-scale analysis to confirm the candidate biomarkers and possible target genes of breast cancer among Arab ancestries.

2.
Arch Med Sci ; 16(3): 497-507, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399095

RESUMO

INTRODUCTION: The SARS-CoV-2 (previously 2019-nCoV) outbreak in Wuhan, China and other parts of the world affects people and spreads coronavirus disease 2019 (COVID-19) through human-to-human contact, with a mortality rate of > 2%. There are no approved drugs or vaccines yet available against SARS-CoV-2. MATERIAL AND METHODS: State-of-the-art tools based on in-silico methods are a cost-effective initial approach for identifying appropriate ligands against SARS-CoV-2. The present study developed the 3D structure of the envelope and nucleocapsid phosphoprotein of SARS-CoV-2, and molecular docking analysis was done against various ligands. RESULTS: The highest log octanol/water partition coefficient, high number of hydrogen bond donors and acceptors, lowest non-bonded interaction energy between the receptor and the ligand, and high binding affinity were considered for the best ligand for the envelope (mycophenolic acid: log P = 3.00; DG = -10.2567 kcal/mol; pKi = 7.713 µM) and nucleocapsid phosphoprotein (1-[(2,4-dichlorophenyl)methyl]pyrazole-3,5-dicarboxylic acid: log P = 2.901; DG = -12.2112 kcal/mol; pKi = 7.885 µM) of SARS-CoV-2. CONCLUSIONS: The study identifies the most potent compounds against the SARS-CoV-2 envelope and nucleocapsid phosphoprotein through state-of-the-art tools based on an in-silico approach. A combination of these two ligands could be the best option to consider for further detailed studies to develop a drug for treating patients infected with SARS-CoV-2, COVID-19.

3.
Arch Med Sci ; 16(3): 508-518, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399096

RESUMO

INTRODUCTION: The extreme health and economic problems in the world due to the SARS-CoV-2 infection have led to an urgent need to identify potential drug targets for treating coronavirus disease 2019 (COVID-19). The present state-of-the-art tool-based screening was targeted to identify drug targets among clinically approved drugs by uncovering SARS-CoV-2 helicase inhibitors through molecular docking analysis. MATERIAL AND METHODS: Helicase is a vital viral replication enzyme, which unwinds nucleic acids and separates the double-stranded nucleic acids into single-stranded nucleic acids. Hence, the SARS-CoV-2 helicase protein 3D structure was predicted, validated, and used to screen the druggable targets among clinically approved drugs such as protease inhibitor, nucleoside reverse transcriptase inhibitor, and non-nucleoside reverse transcriptase inhibitors, used to treat HIV infection using molecular docking analysis. RESULTS: Interaction with SARS-CoV-2 helicase, approved drugs, vapreotide (affinity: -12.88; S score: -9.84 kcal/mol), and atazanavir (affinity: -11.28; S score: -9.32 kcal/mol), approved drugs for treating AIDS-related diarrhoea and HIV infection, respectively, are observed with significantly low binding affinity and MOE score or binding free energy. The functional binding pockets of the clinically approved drugs on SARS-CoV-2 helicase protein molecule suggest that vapreotide and atazanavir may interrupt the activities of the SARS-CoV-2 helicase. CONCLUSIONS: The study suggests that vapreotide may be a choice of drug for wet lab studies to inhibit the infection of SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA