Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 239: 124318, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37015282

RESUMO

The objective of this project is to create a unique type of polymer known as an ion imprinted polymer (IIP) and a non-imprinted polymer (NIP) utilizing natural waste biosorbent materials. One example of this type of waste is Aloe vera, a plant with many medicinal uses that is grown globally. Aloe vera is considered one of the most valuable medicinal plants with a wide range of applications. Extracted Aloe vera was used as functional monomers for the first time to prepare new IIPs, epichlorohydrin, and Cu2+ ion as the cross-linking agent and template, respectively. The NIP was also synthesized for comparison, without the use of the Cu2+ salt. Following polymerization, the IIP particles were cleansed of template ions through a 0.1 M EDTA leaching process, resulting in the formation of cavities within the particles, these cavities in the polymer provide selective linking zones for these specific template ions. The synthesized IIPs were characterized using the most recent identification instruments. The experimental parameters for adsorption, such as pH of a solution, contact time, initial copper concentration, adsorbent dosage, and temperature have been optimized. The most effective conditions for metal adsorption onto the ionic imprinted polymer were found to be a pH of 8.0, a temperature of 30 °C, a concentration of 0.03 g/100 mL, and a contact time of 50 min. Based on the ANOVA statistical value, the adsorption of Cu2+ ion on IIP is significant with very low probability (p) values (<0.001). The Langmuir isotherm model and a second-order reaction were both used in the adsorption process. According to thermodynamic characteristics, Cu2+ adsorption over IIPs and NIP was an endothermic, spontaneous process. Compared to NIP, the imprinted polymer exhibits a significantly better capacity and selectivity for Cu2+ adsorption, the maximum removal percentage of IIPs and NIP was 96.02 % and 74.3 % respectively. Moreover, the research showed that ion imprinting can be a promising technique for preparing selective adsorbents to separate and preconcentrate metal in a medium of multiple competitive metals (Co2+, Cd2+, Ni2+, Zn2+, Fe2+, and Pb2+) The most important point for this new Cu2+-IIPs was shown superior reusability up to 8 cycles with small decrees in uptake capability.


Assuntos
Aloe , Polímeros/química , Água/química , Cobre/química , Adsorção , Íons
2.
Environ Technol ; : 1-13, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35306975

RESUMO

The new adsorbent was prepared by mixing cellulose with dicyclohexyl-18- crown-6 via microwave irradiation method and it was used to remove lead ions from aqueous solution. In contrast to the traditional way (in which grafted polymers are produced by using chemical-free radical producers), this method is rapid, reproducible, and gives a high-quality product. Different physicochemical techniques such as FTIR, SEM, and XRD and TGA were used for the characterization of the produced adsorbent. Based on the ANOVA statistical value, the adsorption of Pb2+ ion onto grafted cellulose has been found to be significant, with very low probability (p) values (<0.001). The pH and initial concentration were observed to be the most significant factors that affected the Pb2+ ion removal from the analysis of variance. Pseudo-second-order and Langmuir equations were applied to the adsorption of Pb2+ ion and under the optimized conditions, the maximum absorption capacity in modified cellulose of Pb2+ was 58.3 mg/g. Various factors which affect metal ion adsorption, including temperature, power of hydrogen, shaking time, adsorbent quantity, and metal ions concentration were studied. More importantly, the adsorbent could be reused by using 0.1 M nitric acid.

3.
J Hazard Mater ; 343: 324-331, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28992570

RESUMO

We have developed a simple one-step method to synthesize novel supramolecular polysaccharide composite from cellulose (CEL) and dibenzo-18-crown 6 using ceric ammonium nitrate as initiator. The [CEL+DB18C6] composites obtained retain properties of their components, namely superior mechanical strength (from CEL), excellent adsorption capability for heavy metal ions from DB18C6. More importantly, the [CEL+DB18C6] composites exhibit truly supramolecular properties. By itself CEL and DB18C6 can adsorb heavy metals. However, adsorption capability of the composite was substantially and synergistically enhanced by adding DB18C6 to CEL. That is, the removal percentage value for Cd2+, Zn2+, Ni2+, Pb2+ and Cu2+ by [CEL+DB18C6] composites are much higher than removal percentage values of individual CEL and DB18C6 composites. It seems that DB18C6 synergistically interact with CEL to form more stable complexes with heavy metals, and as a consequence, the [CEL+DB18C6] composite can adsorb relatively larger amount heavy metals. The adsorption parameters, such as pH, adsorbent dose, contact time, initial metal ion concentration and temperature were optimized. Desorption studies revealed that the regeneration of modified cellulose saturated with these metallic ions depends on the type and concentration of the regenerating solution (NH4Cl, HNO3, NaCl and CaCl2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA