Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Med Sci Monit ; 30: e943321, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38863180

RESUMO

BACKGROUND This study explored the integration of conductive threads into a microfluidic compact disc (CD), developed using the xurographic method, for a potential sweat biosensing platform. MATERIAL AND METHODS The microfluidic CD platform, fabricated using the xurographic method with PVC films, included venting channels and conductive threads linked to copper electrodes. With distinct microfluidic sets for load and metering, flow control, and measurement, the CD's operation involved spinning for sequential liquid movement. Impedance analysis using HIOKI IM3590 was conducted for saline and artificial sweat solutions on 4 identical CDs, ensuring reliable conductivity and measurements over a 1 kHz to 200 kHz frequency range. RESULTS Significant differences in |Z| values were observed between saline and artificial sweat treatments. 27.5 µL of saline differed significantly from 27.5 µL of artificial sweat, 72.5 µL of saline from 72.5 µL of artificial sweat, and 192.5 µL of saline from 192.5 µL of sweat. Significant disparities in |Z| values were observed between dry fibers and Groups 2, 3, and 4 (varying saline amounts). No significant differences emerged between dry fibers and Groups 6, 7, and 8 (distinct artificial sweat amounts). These findings underscore variations in fiber characteristics between equivalent exposures, emphasizing the nuanced response of the microfluidic CD platform to different liquid compositions. CONCLUSIONS This study shows the potential of integrating conductive threads in a microfluidic CD platform for sweat sensing. Challenges in volume control and thread coating degradation must be addressed for transformative biosensing devices in personalized healthcare.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Suor , Suor/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Humanos , Microfluídica/métodos , Microfluídica/instrumentação , Condutividade Elétrica , Eletrodos , Impedância Elétrica
2.
ACS Omega ; 9(9): 10539-10555, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463280

RESUMO

Covarine, copper phthalocyanine, a novel tooth whitening ingredient, has been incorporated into various toothpaste formulations using diverse technologies such as larger flakes, two-phase pastes, and microbeads. In this study, we investigated the behavior of covarine microbeads (200 µm) in Colgate advanced white toothpaste when mixed with artificial and real saliva. Our analysis utilized a custom-designed microfluidic mixer with 400 µm wide channels arranged in serpentine patterns, featuring a Y-shaped design for saliva and toothpaste flow. The mixer, fabricated using stereolithography 3D printing technology, incorporated a flexible transparent resin (Formlabs' Flexible 80A resin) and PMMA layers. COMSOL simulations were performed by utilizing parameters extracted from toothpaste and saliva datasheets, supplemented by laboratory measurements, to enhance simulation accuracy. Experimental assessments encompassing the behavior of covarine particles were conducted using an optical profilometer. Viscosity tests and electrical impedance spectroscopy employing recently developed all-carbon electrodes were employed to analyze different toothpaste dilutions. The integration of experimental data from microfluidic chips with computational simulations offers thorough insights into the interactions of covarine particles with saliva and the formation of microfilms on enamel surfaces.

3.
Sci Rep ; 13(1): 21277, 2023 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042878

RESUMO

Intraoral theranostics, the integration of diagnostics and therapeutics within the oral cavity, is gaining significant traction. This pioneering approach primarily addresses issues like xerostomia (dry mouth), commonly resulting from cancer treatment, with a specific focus on monitoring temperature and humidity. This paper introduces the innovative Intra-Oral Portable Micro-Electronic (IOPM) fluidic theranostic device platform. It leverages conventional dental spoons by incorporating advanced sensors for precise measurements of oral temperature and humidity. Personalization options include a microfluidic chip and a tooth model, enabling targeted delivery of therapeutic agents to optimize treatment outcomes. The electronic control system simplifies the administration of fluid dosages, intelligently adjusted based on real-time oral cavity temperature and humidity readings. Rigorous experimental evaluations validate the platform's precision in delivering fluid volumes at predefined intervals. This platform represents a transformative advancement for individuals contending with oral health challenges such as xerostomia (dry mouth). Furthermore, it has the potential to elevate oral healthcare standards by providing advanced diagnostics and tailored therapeutic solutions, benefiting both patients and dental professionals alike.


Assuntos
Xerostomia , Humanos , Temperatura , Umidade , Xerostomia/diagnóstico , Xerostomia/terapia , Exame Físico
4.
Medicina (Kaunas) ; 59(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38003976

RESUMO

Streptococcus pneumoniae (S. pneumoniae) is a bacterial species often associated with the occurrence of community-acquired pneumonia (CAP). CAP refers to a specific kind of pneumonia that occurs in individuals who acquire the infection outside of a healthcare setting. It represents the leading cause of both death and morbidity on a global scale. Moreover, the declaration of S. pneumoniae as one of the 12 leading pathogens was made by the World Health Organization (WHO) in 2017. Antibiotics like ß-lactams, macrolides, and fluoroquinolones are the primary classes of antimicrobial medicines used for the treatment of S. pneumoniae infections. Nevertheless, the efficacy of these antibiotics is diminishing as a result of the establishment of resistance in S. pneumoniae against these antimicrobial agents. In 2019, the WHO declared that antibiotic resistance was among the top 10 hazards to worldwide health. It is believed that penicillin-binding protein genetic alteration causes ß-lactam antibiotic resistance. Ribosomal target site alterations and active efflux pumps cause macrolide resistance. Numerous factors, including the accumulation of mutations, enhanced efflux mechanisms, and plasmid gene acquisition, cause fluoroquinolone resistance. Furthermore, despite the advancements in pneumococcal vaccinations and artificial intelligence (AI), it is not feasible for individuals to rely on them indefinitely. The ongoing development of AI for combating antimicrobial resistance necessitates more research and development efforts. A few strategies can be performed to curb this resistance issue, including providing educational initiatives and guidelines, conducting surveillance, and establishing new antibiotics targeting another part of the bacteria. Hence, understanding the resistance mechanism of S. pneumoniae may aid researchers in developing a more efficacious antibiotic in future endeavors.


Assuntos
Anti-Infecciosos , Infecções Comunitárias Adquiridas , Pneumonia , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Streptococcus pneumoniae , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Inteligência Artificial , Farmacorresistência Bacteriana , Pneumonia/tratamento farmacológico , Infecções Comunitárias Adquiridas/tratamento farmacológico , Infecções Comunitárias Adquiridas/microbiologia
5.
J Infect Public Health ; 16(11): 1837-1847, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769584

RESUMO

Infectious diseases present a global challenge, requiring accurate diagnosis, effective treatments, and preventive measures. Artificial intelligence (AI) has emerged as a promising tool for analysing complex molecular data and improving the diagnosis, treatment, and prevention of infectious diseases. Computer-aided detection (CAD) using convolutional neural networks (CNN) has gained prominence for diagnosing tuberculosis (TB) and other infectious diseases such as COVID-19, HIV, and viral pneumonia. The review discusses the challenges and limitations associated with AI in this field and explores various machine-learning models and AI-based approaches. Artificial neural networks (ANN), recurrent neural networks (RNN), support vector machines (SVM), multilayer neural networks (MLNN), CNN, long short-term memory (LSTM), and random forests (RF) are among the models discussed. The review emphasizes the potential of AI to enhance the accuracy and efficiency of diagnosis, treatment, and prevention of infectious diseases, highlighting the need for further research and development in this area.

6.
Lymphat Res Biol ; 21(5): 463-468, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37093011

RESUMO

Background: Breast cancer-related lymphedema (BCRL) is a debilitating chronic illness. Early management and prevention of disease progression rely on lymphedema monitoring and assessment. At present, lymphedema monitoring systems are costly and do not promote remote monitoring. Thus, a low-cost, portable, mobile-based bioimpedance lymphedema monitoring system (Mobilymph) was developed to ensure continuous lymphedema surveillance. Method and Results: Forty-five healthy and 100 BCRL participants were recruited in this study. Mobilymph bioimpedance measurement was validated with a Quadscan 4000 on healthy participants' arms. The interarm bioimpedance ratio was determined to evaluate the discriminatory capability of Mobilymph to detect BCRL. Mobilymph's bioimpedance results show no significant difference compared to Quadscan 4000. The interarm bioimpedance ratios were significantly different (p < 0.001), between participants in healthy and Stage 1, Stage 0 and Stage 1, and Stage 1 and Stage 2. Healthy and Stage 0 participants had similar interarm impedance ratios (p = 0.63). Conclusion: The bioimpedance results show that Mobilymph bioimpedance measurement is comparable to Quadscan 4000 and can detect BCRL arms. Thus, Mobilymph lymphedema monitoring system offers a feasible solution for early lymphedema diagnosis and treatment monitoring. Clinical trial registration number: MREC ID No.: 2020316-8181.

7.
PLoS One ; 18(2): e0280381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795661

RESUMO

Diagnosing oral diseases at an early stage may lead to better preventive treatments, thus reducing treatment burden and costs. This paper introduces a systematic design of a microfluidic compact disc (CD) consisting of six unique chambers that run simultaneously from sample loading, holding, mixing and analysis. In this study, the electrochemical property changes between real saliva and artificial saliva mixed with three different types of mouthwashes (i.e. chlorhexidine-, fluoride- and essential oil (Listerine)-based mouthwashes) were investigated using electrical impedance analysis. Given the diversity and complexity of patient's salivary samples, we investigated the electrochemical impedance property of healthy real saliva mixed with different types of mouthwashes to understand the different electrochemical property which could be a foundation for diagnosis and monitoring of oral diseases. On the other hand, electrochemical impedance property of artificial saliva, a commonly used moisturizing agent and lubricant for the treatment of xerostomia or dry mouth syndrome was also studied. The findings indicate that artificial saliva and fluoride-based mouthwash showed higher conductance values compared to real saliva and two other different types of mouthwashes. The ability of our new microfluidic CD platform to perform multiplex processes and detection of electrochemical property of different types of saliva and mouthwashes is a fundamental concept for future research on salivary theranostics using point-of-care microfluidic CD platform.


Assuntos
Antissépticos Bucais , Xerostomia , Humanos , Saliva Artificial/química , Impedância Elétrica , Fluoretos/análise , Microfluídica , Clorexidina , Saliva/química , Xerostomia/terapia
8.
J Healthc Eng ; 2023: 1951165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756137

RESUMO

In sports, fatigue management is vital as adequate rest builds strength and enhances performance, whereas inadequate rest exposes the body to prolonged fatigue (PF) or also known as overtraining. This paper presents PF identification and classification based on surface electromyography (EMG) signals. An experiment was performed on twenty participants to investigate the behaviour of surface EMG during the inception of PF. PF symptoms were induced in accord with a five-day Bruce Protocol treadmill test on four lower extremity muscles: the biceps femoris (BF), rectus femoris (RF), vastus medialis (VM), and vastus lateralis (VL). The results demonstrate that the experiment successfully induces soreness, unexplained lethargy, and performance decrement and also indicate that the progression of PF can be observed based on changes in frequency features (ΔF med and ΔF mean) and time features (ΔRMS and ΔMAV) of surface EMG. This study also demonstrates the ability of wavelet index features in PF identification. Using a naïve Bayes (NB) classifier exhibits the highest accuracy based on time and frequency features with 98% in distinguishing PF on RF, 94% on BF, 9% on VL, and 97% on VM. Thus, this study has positively indicated that surface EMG can be used in identifying the inception of PF. The implication of the findings is significant in sports to prevent a greater risk of PF.


Assuntos
Fadiga Muscular , Músculo Quadríceps , Humanos , Eletromiografia/métodos , Teorema de Bayes , Fadiga , Músculo Esquelético
9.
Vaccines (Basel) ; 11(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36679947

RESUMO

The emergence of novel variants of SARS-CoV-2 and their abilities to evade the immune response elicited through presently available vaccination makes it essential to recognize the mechanisms through which SARS-CoV-2 interacts with the human immune response. It is essential not only to comprehend the infection mechanism of SARS-CoV-2 but also for the generation of effective and reliable vaccines against COVID-19. The effectiveness of the vaccine is supported by the adaptive immune response, which mainly consists of B and T cells, which play a critical role in deciding the prognosis of the COVID-19 disease. T cells are essential for reducing the viral load and containing the infection. A plethora of viral proteins can be recognized by T cells and provide a broad range of protection, especially amid the emergence of novel variants of SARS-CoV-2. However, the hyperactivation of the effector T cells and reduced number of lymphocytes have been found to be the key characteristics of the severe disease. Notably, excessive T cell activation may cause acute respiratory distress syndrome (ARDS) by producing unwarranted and excessive amounts of cytokines and chemokines. Nevertheless, it is still unknown how T-cell-mediated immune responses function in determining the prognosis of SARS-CoV-2 infection. Additionally, it is unknown how the functional perturbations in the T cells lead to the severe form of the disease and to reduced protection not only against SARS-CoV-2 but many other viral infections. Hence, an updated review has been developed to understand the involvement of T cells in the infection mechanism, which in turn determines the prognosis of the disease. Importantly, we have also focused on the T cells' exhaustion under certain conditions and how these functional perturbations can be modulated for an effective immune response against SARS-CoV-2. Additionally, a range of therapeutic strategies has been discussed that can elevate the T cell-mediated immune response either directly or indirectly.

10.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500794

RESUMO

Micro and nano interdigitated electrode array (µ/n-IDEA) configurations are prominent working electrodes in the fabrication of electrochemical sensors/biosensors, as their design benefits sensor achievement. This paper reviews µ/n-IDEA as working electrodes in four-electrode electrochemical sensors in terms of two-dimensional (2D) planar IDEA and three-dimensional (3D) IDEA configurations using carbon or metal as the starting materials. In this regard, the enhancement of IDEAs-based biosensors focuses on controlling the width and gap measurements between the adjacent fingers and increases the IDEA's height. Several distinctive methods used to expand the surface area of 3D IDEAs, such as a unique 3D IDEA design, integration of mesh, microchannel, vertically aligned carbon nanotubes (VACNT), and nanoparticles, are demonstrated and discussed. More notably, the conventional four-electrode system, consisting of reference and counter electrodes will be compared to the highly novel two-electrode system that adopts IDEA's shape. Compared to the 2D planar IDEA, the expansion of the surface area in 3D IDEAs demonstrated significant changes in the performance of electrochemical sensors. Furthermore, the challenges faced by current IDEAs-based electrochemical biosensors and their potential solutions for future directions are presented herein.

11.
Polymers (Basel) ; 14(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559856

RESUMO

Carbon derived from biomass waste usage is rising in various fields of application due to its availability, cost-effectiveness, and sustainability, but it remains limited in tissue engineering applications. Carbon derived from human hair waste was selected to fabricate a carbon-based bioscaffold (CHAK) due to its ease of collection and inexpensive synthesis procedure. The CHAK was fabricated via gelation, rapid freezing, and ethanol immersion and characterised based on their morphology, porosity, Fourier transforms infrared (FTIR), tensile strength, swelling ability, degradability, electrical conductivity, and biocompatibility using Wharton's jelly-derived mesenchymal stem cells (WJMSCs). The addition of carbon reduced the porosity of the bioscaffold. Via FTIR analysis, the combination of carbon, agar, and KGM was compatible. Among the CHAK, the 3HC bioscaffold displayed the highest tensile strength (62.35 ± 29.12 kPa). The CHAK also showed excellent swelling and water uptake capability. All bioscaffolds demonstrated a slow degradability rate (<50%) after 28 days of incubation, while the electrical conductivity analysis showed that the 3AHC bioscaffold had the highest conductivity compared to other CHAK bioscaffolds. Our findings also showed that the CHAK bioscaffolds were biocompatible with WJMSCs. These findings showed that the CHAK bioscaffolds have potential as bioscaffolds for tissue engineering applications.

12.
Nanomaterials (Basel) ; 12(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432311

RESUMO

bioNEMS/MEMS has emerged as an innovative technology for the miniaturisation of biomedical devices with high precision and rapid processing since its first R&D breakthrough in the 1980s. To date, several organic including food waste derived nanomaterials and inorganic nanomaterials (e.g., carbon nanotubes, graphene, silica, gold, and magnetic nanoparticles) have steered the development of high-throughput and sensitive bioNEMS/MEMS-based biosensors, actuator systems, drug delivery systems and implantable/wearable sensors with desirable biomedical properties. Turning food waste into valuable nanomaterials is potential groundbreaking research in this growing field of bioMEMS/NEMS. This review aspires to communicate recent progress in organic and inorganic nanomaterials based bioNEMS/MEMS for biomedical applications, comprehensively discussing nanomaterials criteria and their prospects as ideal tools for biomedical devices. We discuss clinical applications for diagnostic, monitoring, and therapeutic applications as well as the technological potential for cell manipulation (i.e., sorting, separation, and patterning technology). In addition, current in vitro and in vivo assessments of promising nanomaterials-based biomedical devices will be discussed in this review. Finally, this review also looked at the most recent state-of-the-art knowledge on Internet of Things (IoT) applications such as nanosensors, nanoantennas, nanoprocessors, and nanobattery.

13.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296578

RESUMO

Mycobacterium tuberculosis (Mtb), an acid-fast bacillus that causes Tuberculosis (TB), is a pathogen that caused 1.5 million deaths in 2020. As per WHO estimates, another 4.1 million people are suffering from latent TB, either asymptomatic or not diagnosed, and the frequency of drug resistance is increasing due to intrinsically linked factors from both host and bacterium. For instance, poor access to TB diagnosis and reduced treatment in the era of the COVID-19 pandemic has resulted in more TB deaths and an 18% reduction in newly diagnosed cases of TB. Additionally, the detection of Mtb isolates exhibiting resistance to multiple drugs (MDR, XDR, and TDR) has complicated the scenario in the pathogen's favour. Moreover, the conventional methods to detect drug resistance may miss mutations, making it challenging to decide on the treatment regimen. However, owing to collaborative initiatives, the last two decades have witnessed several advancements in both the detection methods and drug discovery against drug-resistant isolates. The majority of them belong to nucleic acid detection techniques. In this review, we highlight and summarize the molecular mechanism underlying drug resistance in Mtb, the recent advancements in resistance detection methods, and the newer drugs used against drug-resistant TB.


Assuntos
COVID-19 , Mycobacterium tuberculosis , Ácidos Nucleicos , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Pandemias , Tuberculose/tratamento farmacológico , Tuberculose/epidemiologia , Tuberculose/microbiologia , Resistência a Medicamentos , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
14.
Sensors (Basel) ; 22(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35684893

RESUMO

This paper presents an optimization of the medication delivery drone with the Internet of Things (IoT)-Guidance Landing System based on direction and intensity of light. The IoT-GLS was incorporated into the system to assist the drone's operator or autonomous system to select the best landing angles for landing. The landing selection was based on the direction and intensity of the light. The medication delivery drone system was developed using an Arduino Uno microcontroller board, ESP32 DevKitC V4 board, multiple sensors, and IoT mobile apps to optimize face detection. This system can detect and compare real-time light intensity from all directions. The results showed that the IoT-GLS has improved the distance of detection by 192% in a dark environment and exhibited an improvement in face detection distance up to 147 cm in a room with low light intensity. Furthermore, a significant correlation was found between face recognition's detection distance, light source direction, light intensity, and light color (p < 0.05). The findings of an optimal efficiency of facial recognition for medication delivery was achieved due to the ability of the IoT-GLS to select the best angle of landing based on the light direction and intensity.


Assuntos
Internet das Coisas , Aplicativos Móveis , Confidencialidade , Dispositivos Aéreos não Tripulados
15.
Health Technol (Berl) ; 12(3): 655-662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399289

RESUMO

Women in Medical Physics and Biomedical Engineering (WiMPBME) is a Task Group established in 2014 under the International Union of Physical and Engineering Scientists in Medicine (IUPESM). The group's main role is to identify, develop, implement, and coordinate various tasks and projects related to women's needs and roles in medical physics and biomedical engineering around the world. The current paper summarizes the past, present and future goals and activities undertaken or planned by the Task group in order to motivate, nurture and support women in medical physics and biomedical engineering throughout their professional careers. In addition, the article includes the historical pathway followed by various women's groups and subcommittees from 2004 up to the present day and depicts future aims to further these professions in a gender-balanced manner.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35270801

RESUMO

(1) Background: This paper aims to present and discuss the most significant challenges encountered by STEM professionals associated with remote working during the COVID-19 lockdowns. (2) Methods: We performed a qualitative analysis of 921 responses from professionals from 76 countries to the open-ended question: "What has been most challenging during the lockdown for you, and/or your family?" (3) Findings: Participants reported challenges within the immediate family to include responsibilities for school, childcare, and children's wellbeing; and the loss of social interactions with family and friends. Participants reported increased domestic duties, blurred lines between home and work, and long workdays. Finding adequate workspace was a problem, and adaptations were necessary, especially when adults shared the same setting for working and childcare. Connectivity issues and concentration difficulties emerged. While some participants reported employers' expectations did not change, others revealed concerns about efficiency. Mental health issues were expressed as anxiety and depression symptoms, exhaustion and burnout, and no outlets for stress. Fear of becoming infected with COVID-19 and uncertainties about the future also emerged. Pressure points related to gender, relationship status, and ethnicities were also evaluated. Public policies differed substantially across countries, raising concerns about the adherence to unnecessary restrictions, and similarly, restrictions being not tight enough. Beyond challenges, some benefits emerged, such as increased productivity and less time spent getting ready for work and commuting. Confinement resulted in more quality time and stronger relationships with family. (4) Interpretation: Viewpoints on positive and negative aspects of remote working differed by gender. Females were more affected professionally, socially, and personally than males. Mental stress and the feeling of inadequate work efficiency in women were caused by employers' expectations and lack of flexibility. Working from home turned out to be challenging, primarily due to a lack of preparedness, limited access to a dedicated home-office, and lack of previous experience in multi-layer/multi-scale environments.


Assuntos
COVID-19 , Adulto , COVID-19/epidemiologia , Criança , Controle de Doenças Transmissíveis , Feminino , Humanos , Masculino , Pandemias , SARS-CoV-2 , Teletrabalho
17.
Tissue Eng Part C Methods ; 28(10): 529-544, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35350873

RESUMO

Human hair is a potential biomaterial for biomedical applications. Improper disposal of human hair may pose various adverse effects on the environment and human health. Therefore, proper management of human hair waste is pivotal. Human hair fiber and its derivatives offer various advantages as biomaterials such as biocompatibility, biodegradability, low toxicity, radical scavenging, electroconductivity, and intrinsic biological activity. Therefore, the favorable characteristics of human hair have rendered its usage in tissue engineering (TE) applications including skin, cardiac, nerve, bone, ocular, and periodontal. Moreover, the strategies by utilizing human hair as a biomaterial for TE applications may reduce the accumulation of human hair. Thus, it also improves human hair waste management while promoting natural, environmental-friendly, and nontoxic materials. Furthermore, promoting sustainable materials production will benefit human health and well-being. Hence, this article reviews and discusses human hair characteristics as sustainable biomaterials and their recent application in TE applications. Impact Statement This review article highlights the sustainability aspects of human hair as raw biomaterials and various elements of human hair that could potentially be used in tissue engineering (TE) applications. Furthermore, this article discusses numerous benefits of human hair, highlighting its value as biomaterials in bioscaffold development for TE applications. Moreover, this article reviews the role and effect of human hair in various TE applications, including skin, cardiac, nerve, bone, ocular, and periodontal.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Humanos , Osso e Ossos , Cabelo , Coração
18.
Eur J Clin Nutr ; 76(5): 680-684, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34620997

RESUMO

OBJECTIVE: To evaluate the role of PhA in diabetes in a large population of older adults with a high prevalence of diabetes in order to gain new insights on the potential diagnostic and prognostic role of PhA in individuals with diabetes. DESIGN: Cross-sectional study. SETTING: Teaching Hospital. PARTICIPANTS: 1085 individuals aged 55 years or over. MEASUREMENTS: Phase Angle was obtained using bioimpedance analysis with the Bodystat QuadScan® 4000. Diabetes mellitus was considered present with fasting hyperglycaemia (serum fasting glucose >6.66 mmol/l), HbA1c > 42 mmol/mol (6.1%), or self-reported Diabetes or the consumption of glucose-lowering agents. RESULTS: The mean age of the (standard deviation) of the 1,085 participants was 68.11 (7.12) years and 60.7% were women. Among male participants, individuals with PhA within the lowest quartile (PhA ≤4.9) were significantly more likely to have diabetes mellitus [odds Ratio (95% confidence interval, CI), 2.02 (1.17-3.47)] following adjustments for age, body mass index and other comorbidities. The above relationship was attenuated following further adjustment hypoglycaemic medications. Men on oral hypoglycaemic agents had significantly reduced PhA [mean difference (95% CI), -0.44 (-0.67 to -0.22)]. No significant relationship between PhA and diabetes existed among women. CONCLUSION: The association between lower PhA (≤4.9) in men aged 55 and over and diabetes which is accounted for by oral hypoglycaemic agents. The mechanisms underlying this relationship remain unclear. This relationship should also be evaluated further to determine the potential of PhA as a prognostic tool for diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Idoso , Estudos Transversais , Diabetes Mellitus/epidemiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Glucose , Humanos , Hipoglicemiantes/uso terapêutico , Vida Independente , Masculino
19.
Polymers (Basel) ; 13(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34883564

RESUMO

A scaffold is a crucial biological substitute designed to aid the treatment of damaged tissue caused by trauma and disease. Various scaffolds are developed with different materials, known as biomaterials, and have shown to be a potential tool to facilitate in vitro cell growth, proliferation, and differentiation. Among the materials studied, carbon materials are potential biomaterials that can be used to develop scaffolds for cell growth. Recently, many researchers have attempted to build a scaffold following the origin of the tissue cell by mimicking the pattern of their extracellular matrix (ECM). In addition, extensive studies were performed on the various parameters that could influence cell behaviour. Previous studies have shown that various factors should be considered in scaffold production, including the porosity, pore size, topography, mechanical properties, wettability, and electroconductivity, which are essential in facilitating cellular response on the scaffold. These interferential factors will help determine the appropriate architecture of the carbon-based scaffold, influencing stem cell (SC) response. Hence, this paper reviews the potential of carbon as a biomaterial for scaffold development. This paper also discusses several crucial factors that can influence the feasibility of the carbon-based scaffold architecture in supporting the efficacy and viability of SCs.

20.
Gend Work Organ ; 28(Suppl 2): 378-396, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34230783

RESUMO

The COVID-19 pandemic has forced many people, including those in the fields of science and engineering, to work from home. The new working environment caused by the pandemic is assumed to have a different impact on the amount of work that women and men can do from home. Particularly, if the major burden of child and other types of care is still predominantly on the shoulders of women. As such, a survey was conducted to assess the main issues that biomedical engineers, medical physicists (academics and professionals), and other similar professionals have been facing when working from home during the pandemic. A survey was created and disseminated worldwide. It originated from a committee of International Union for Physical and Engineering Sciences in Medicine (IUPESM; Women in Medical Physics and Biomedical Engineering Task Group) and supported by the Union. The ethics clearance was received from Carleton University. The survey was deployed on the Survey Monkey platform and the results were analyzed using IBM SPSS software. The analyses mainly consisted of frequency of the demographic parameters and the cross-tabulation of gender with all relevant variables describing the impact of work at home. A total of 921 responses from biomedical professions in 76 countries were received: 339 males, 573 females, and nine prefer-not-to-say/other. Regarding marital/partnership status, 85% of males were married or in partnership, and 15% were single, whereas 72% of females were married or in partnership, and 26% were single. More women were working from home during the pandemic (68%) versus 50% of men. More men had access to an office at home (68%) versus 64% for women. The proportion of men spending more than 3 h on child care and schooling per day was 12%, while for women it was 22%; for household duties, 8% of men spent more than 3 h; for women, this was 12.5%. It is interesting to note that 44% of men spent between 1 and 3 h per day on household duties, while for women, it was 55%. The high number of survey responses can be considered excellent. It is interesting to note that men participate in childcare and household duties in a relatively high percentage; although this corresponds to less hours daily than for women. It is far more than can be found 2 and 3 decades ago. This may reflect the situation in the developed countries only-as majority of responses (75%) was received from these countries. It is evident that the burden of childcare and household duties will have a negative impact on the careers of women if the burden is not more similar for both sexes. It is important to recognize that a change in policies of organizations that hire them may be required to provide accommodation and compensation to minimize the negative impact on the professional status and career of men and women who work in STEM fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA