RESUMO
Mutations in the Trypanosoma brucei aquaporin AQP2 are associated with resistance to pentamidine and melarsoprol. We show that TbAQP2 but not TbAQP3 was positively selected for increased pore size from a common ancestor aquaporin. We demonstrate that TbAQP2's unique architecture permits pentamidine permeation through its central pore and show how specific mutations in highly conserved motifs affect drug permeation. Introduction of key TbAQP2 amino acids into TbAQP3 renders the latter permeable to pentamidine. Molecular dynamics demonstrates that permeation by dicationic pentamidine is energetically favourable in TbAQP2, driven by the membrane potential, although aquaporins are normally strictly impermeable for ionic species. We also identify the structural determinants that make pentamidine a permeant although most other diamidine drugs are excluded. Our results have wide-ranging implications for optimising antitrypanosomal drugs and averting cross-resistance. Moreover, these new insights in aquaporin permeation may allow the pharmacological exploitation of other members of this ubiquitous gene family.
African sleeping sickness is a potentially deadly illness caused by the parasite Trypanosoma brucei. The disease is treatable, but many of the current treatments are old and are becoming increasingly ineffective. For instance, resistance is growing against pentamidine, a drug used in the early stages in the disease, as well as against melarsoprol, which is deployed when the infection has progressed to the brain. Usually, cases resistant to pentamidine are also resistant to melarsoprol, but it is still unclear why, as the drugs are chemically unrelated. Studies have shown that changes in a water channel called aquaglyceroporin 2 (TbAQP2) contribute to drug resistance in African sleeping sickness; this suggests that it plays a role in allowing drugs to kill the parasite. This molecular 'drain pipe' extends through the surface of T. brucei, and should allow only water and a molecule called glycerol in and out of the cell. In particular, the channel should be too narrow to allow pentamidine or melarsoprol to pass through. One possibility is that, in T. brucei, the TbAQP2 channel is abnormally wide compared to other members of its family. Alternatively, pentamidine and melarsoprol may only bind to TbAQP2, and then 'hitch a ride' when the protein is taken into the parasite as part of the natural cycle of surface protein replacement. Alghamdi et al. aimed to tease out these hypotheses. Computer models of the structure of the protein were paired with engineered changes in the key areas of the channel to show that, in T. brucei, TbAQP2 provides a much broader gateway into the cell than observed for similar proteins. In addition, genetic analysis showed that this version of TbAQP2 has been actively selected for during the evolution process of T. brucei. This suggests that the parasite somehow benefits from this wider aquaglyceroporin variant. This is a new resistance mechanism, and it is possible that aquaglyceroporins are also larger than expected in other infectious microbes. The work by Alghamdi et al. therefore provides insight into how other germs may become resistant to drugs.
Assuntos
Aquaporina 2 , Pentamidina/farmacologia , Trypanosoma brucei brucei , Animais , Aquaporina 2/química , Aquaporina 2/genética , Aquaporina 2/metabolismo , Aquaporinas/química , Aquaporinas/genética , Aquaporinas/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Melarsoprol/farmacologia , Mutação , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/tratamento farmacológicoRESUMO
We have previously reported that curcumin analogs with a C7 linker bearing a C4-C5 olefinic linker with a single keto group at C3 (enone linker) display midnanomolar activity against the bloodstream form of Trypanosoma brucei. However, no clear indication of their mechanism of action or superior antiparasitic activity relative to analogs with the original di-ketone curcumin linker was apparent. To further investigate their utility as antiparasitic agents, we compare the cellular effects of curcumin and the enone linker lead compound 1,7-bis(4-hydroxy-3-methoxyphenyl)hept-4-en-3-one (AS-HK014) here. An AS-HK014-resitant line, trypanosomes adapted to AS-HK014 (TA014), was developed by in vitro exposure to the drug. Metabolomic analysis revealed that exposure to AS-HK014, but not curcumin, rapidly depleted glutathione and trypanothione in the wild-type line, although almost all other metabolites were unchanged relative to control. In TA014 cells, thiol levels were similar to untreated wild-type cells and not significantly depleted by AS-HK014. Adducts of AS-HK014 with both glutathione and trypanothione were identified in AS-HK014-exposed wild-type cells and reproduced by chemical reaction. However, adduct accumulation in sensitive cells was much lower than in resistant cells. TA014 cells did not exhibit any changes in sequence or protein levels of glutathione synthetase and γ-glutamylcysteine synthetase relative to wild-type cells. We conclude that monoenone curcuminoids have a different mode of action than curcumin, rapidly and specifically depleting thiol levels in trypanosomes by forming an adduct. This adduct may ultimately be responsible for the highly potent trypanocidal and antiparasitic activity of the monoenone curcuminoids.
Assuntos
Curcumina/análogos & derivados , Curcumina/metabolismo , Glutationa/análogos & derivados , Espermidina/análogos & derivados , Tripanossomicidas/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Curcumina/farmacologia , Glutationa/metabolismo , Humanos , Espermidina/metabolismo , Tripanossomicidas/farmacologiaRESUMO
OBJECTIVES: to investigate the anti-kinetoplastid activity of choline-derived analogues with previously reported antimalarial efficacy. METHODS: from an existing choline analogue library, seven antimalarial compounds, representative of the first-, second- and third-generation analogues previously developed, were assessed for activity against Trypanosoma and Leishmania spp. Using a variety of techniques, the effects of choline analogue exposure on the parasites were documented and a preliminary investigation of their mode of action was performed. RESULTS: the activities of choline-derived compounds against Trypanosoma brucei and Leishmania mexicana were determined. The compounds displayed promising anti-kinetoplastid activity, particularly against T. brucei, to which 4/7 displayed submicromolar EC(50) values for the wild-type strain. Low micromolar concentrations of most compounds cleared trypanosome cultures within 24-48 h. The compounds inhibit a choline transporter in Leishmania, but their entry may not depend only on this carrier; T. b. brucei lacks a choline carrier and the mode of uptake remains unclear. The compounds had no effect on the overall lipid composition of the cells, cell cycle progression or cyclic adenosine monophosphate production or short-term effects on intracellular calcium levels. However, several of the compounds, displayed pronounced effects on the mitochondrial membrane potential; this action was not associated with production of reactive oxygen species but rather with a slow rise of intracellular calcium levels and DNA fragmentation. CONCLUSIONS: the choline analogues displayed strong activity against kinetoplastid parasites, particularly against T. b. brucei. In contrast to their antimalarial activity, they did not act on trypanosomes by disrupting choline salvage or phospholipid metabolism, instead disrupting mitochondrial function, leading to chromosomal fragmentation.
Assuntos
Antiprotozoários/farmacologia , Cátions Bivalentes/farmacologia , Colina/análogos & derivados , Colina/farmacologia , Leishmania mexicana/efeitos dos fármacos , Trypanosoma brucei brucei/efeitos dos fármacos , Antiprotozoários/química , Fragmentação do DNA , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacosRESUMO
Given the pressing need for new antiprotozoal drugs without cross-resistance with current (failing) chemotherapy, we have explored 3-tridecylpyridinium alkaloids (3TPAs), derivatives of viscosamine, as antiparasitic agents. We have developed a simple synthetic route toward viscosamine and related cyclic and linear monomers and oligomers. Evaluation for cytotoxicity on the protozoan parasites Trypanosoma brucei, Leishmania spp., and Plasmodium falciparum revealed several 3TPAs with antiprotozoal activity in the nanomolar range. Their promising selectivity index in vitro prompted us to study the dynamics of cytotoxicity on trypanosomes in more detail. Parasites were killed relatively slowly at therapeutically safe concentrations, in a process that did not target the cell cycle. Clearance of T. brucei cultures was observed at drug concentrations of 1-10 µM.
RESUMO
The natural curcuminoids curcumin (1), demethoxycurcumin (2) and bisdemethoxycurcumin (3) have been chemically modified to give 46 analogs and 8 pairs of 1:1 mixture of curcuminoid analogs and these parent curcuminoids and their analogs were assessed against protozoa of the Trypanosoma and Leishmania species. The parent curcuminoids exhibited low antitrypanosomal activity (EC(50) for our drug-sensitive Trypanosoma brucei brucei line (WT) of compounds 1, 2 and 3 are 2.5, 4.6 and 7.7 microM, respectively). Among 43 curcuminoid analogs and 8 pairs of 1:1 mixture of curcuminoid analogs tested, 8 pure analogs and 5 isomeric mixtures of analogs exhibited high antitrypanosomal activity in submicromolar order of magnitude. Among these highly active analogs, 1,7-bis(4-hydroxy-3-methoxyphenyl)hept-4-en-3-one (40) was the most active compound, with an EC(50) value of 0.053+/-0.007 microM; it was about 2-fold more active than the standard veterinary drug diminazene aceturate (EC(50) 0.12+/-0.01 microM). Using a previously characterized diminazene-resistant T. b. brucei (TbAT1-KO) and a derived multi-drug resistant line (B48), no cross-resistance of curcuminoids was observed to the diamidine and melaminophenyl arsenical drugs that are the current treatments. Indeed, curcuminoids carrying a conjugated keto (enone) motif, including 40, were significantly more active against T. b. brucei B48. This enone motif was found to contribute to particularly high trypanocidal activity against all Trypanosoma species and strains tested. The parent curcuminoids showed low antileishmanial activity (EC(50) values of compounds 1 and 2 for Leishmania mexicana amastigotes are 16+/-3 and 37+/-6 microM, respectively) while the control drug, pentamidine, displayed an EC(50) of 16+/-2 microM. Among the active curcuminoid analogs, four compounds exhibited EC(50) values of less than 5 microM against Leishmania major promastigotes and four against L. mexicana amastigotes. No significant difference in sensitivity to curcuminoids between L. major promastigotes and L. mexicana amastigotes was observed. The parent curcuminoids and most of their analogs were also tested for their toxicity against human embryonic kidney (HEK) cells. All the curcuminoids exhibited lower toxicity to HEK cells than to T. b. brucei bloodstream forms and only one of the tested compounds showed significantly higher activity against HEK cells than curcumin (1). The selectivity index for T. b. brucei ranged from 3-fold to 1500-fold. The selectivity index for the most active analog, the enone 40, was 453-fold.