Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1254589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155836

RESUMO

Proper growth and branching of dendrites are crucial for adequate central nervous system (CNS) functioning. The neuronal dendritic geometry determines the mode and quality of information processing. Any defects in dendrite development will disrupt neuronal circuit formation, affecting brain function. Besides cell-intrinsic programmes, extrinsic factors regulate various aspects of dendritic development. Among these extrinsic factors are extracellular molecular signals which can shape the dendrite architecture during early development. This review will focus on extrinsic factors regulating dendritic growth during early neuronal development, including neurotransmitters, neurotrophins, extracellular matrix proteins, contact-mediated ligands, and secreted and diffusible cues. How these extracellular molecular signals contribute to dendritic growth has been investigated in developing nervous systems using different species, different areas within the CNS, and different neuronal types. The response of the dendritic tree to these extracellular molecular signals can result in growth-promoting or growth-limiting effects, and it depends on the receptor subtype, receptor quantity, receptor efficiency, the animal model used, the developmental time windows, and finally, the targeted signal cascade. This article reviews our current understanding of the role of various extracellular signals in the establishment of the architecture of the dendrites.

2.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076943

RESUMO

Current information regarding the effects of a high-fat diet (HFD) on skeletal muscle is contradictory. This study aimed to investigate the effects of a long-term HFD on skeletal muscle in male and female mice at the morphological, cellular, and molecular levels. Adult mice of the C57BL/6 strain were fed standard chow or an HFD for 20 weeks. The tibialis anterior muscles were dissected, weighed, and processed for cellular and molecular analyses. Immunocytochemical and morphometric techniques were applied to quantify fiber size, satellite cells (SCs), and myonuclei. Additionally, PCR array and RT-qPCR tests were performed to determine the expression levels of key muscle genes. Muscles from HFD mice showed decreases in weight, SCs, and myonuclei, consistent with the atrophic phenotype. This atrophy was associated with a decrease in the percentage of oxidative fibers within the muscle. These findings were further confirmed by molecular analyses that showed significant reductions in the expression of Pax7, Myh1, and Myh2 genes and increased Mstn gene expression. Male and female mice showed similar trends in response to HFD-induced obesity. These findings indicate that the long-term effects of obesity on skeletal muscle resemble those of age-related sarcopenia.


Assuntos
Dieta Hiperlipídica , Músculo Esquelético , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Oxirredução
3.
Dis Model Mech ; 11(3)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29434026

RESUMO

Although the existence of a close relationship between the early maternal developmental environment, fetal size at birth and the risk of developing disease in adulthood has been suggested, most studies, however, employed experimentally induced intrauterine growth restriction as a model to link this with later adult disease. Because embryonic size variation also occurs under normal growth and differentiation, elucidating the molecular mechanisms underlying these changes and their relevance to later adult disease risk becomes important. The birth weight of rat pups vary according to the uterine horn positions. Using birth weight as a marker, we compared two groups of rat pups - lower birth weight (LBW, 5th to 25th percentile) and average birth weight (ABW, 50th to 75th percentile) - using morphological, biochemical and molecular biology, and genetic techniques. Our results show that insulin metabolism, Pi3k/Akt and Pparγ signaling and the genes regulating growth and metabolism are significantly different in these groups. Methylation at the promoter of the InsII (Ins2) gene and DNA methyltransferase 1 in LBW pups are both increased. Additionally, the Dnmt1 repressor complex, which includes Hdac1, Rb (Rb1) and E2f1, was also upregulated in LBW pups. We conclude that the Dnmt1 repressor complex, which regulates the restriction point of the cell cycle, retards the rate at which cells traverse the G1 or G0 phase of the cell cycle in LBW pups, thereby slowing down growth. This regulatory mechanism mediated by Dnmt1 might contribute to the production of small-size pups and altered physiology and pathology in adult life.


Assuntos
Crescimento e Desenvolvimento , Metabolismo , Animais , Animais Recém-Nascidos , Peso ao Nascer , Ciclo Celular/genética , Metilação de DNA/genética , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Glucagon/metabolismo , Glucose/metabolismo , Crescimento e Desenvolvimento/genética , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Metabolismo/genética , Metiltransferases/metabolismo , Modelos Animais , Músculo Esquelético/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , PPAR gama/genética , PPAR gama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
4.
BMC Neurosci ; 16: 37, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-26092157

RESUMO

BACKGROUND: Mitochondrial dysregulation is important in axonal damage and demyelination in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). There is however, no evidence in the literature of any study that has examined cellular bioenergetics of the central nervous system (CNS) during the early development and clinical course of EAE. EAE, a rodent model of relapsing/remitting MS, is a CD4(+) T cell-mediated disease of the CNS. We hypothesize that CNS bioenergetics might predict prognosis, and that preserved bioenergetics might underlie the remission from disease. The study aims therefore, to determine whether the clinical history of EAE is influenced by cellular respiration of the CNS in susceptible Dark Agouti (DA) and resistant Albino Oxford (AO) rats. METHODS: Experimental autoimmune encephalomyelitis was induced by myelin basic protein in complete Freud Adjuvant in the footpads of DA and AO rats. A phosphorescence analyzer that determines cellular respiration was used to monitor oxygen consumption and ATP concentration was measured using the Enliten ATP assay system. Disease pathology was demonstrated by H&E and Luxol fast blue staining of sections of the lumbar regions of the spinal cord. Mitochondrial size in relation to axonal size was determined by electron microscopy. Apoptosis was studied by HPLC measurement of intracellular caspase-3 activity and caspase immunohistochemistry. Role and source of caspase 1 was studied by double immunofluorescence with antibodies for caspase-1, microglia (anti-Iba1) and astrocytes (anti-GFAP). RESULTS: The cellular respiration of the CNS did not vary between diseased and normal rats. We also demonstrate here, that at the peak of disease, inflammation as shown by caspase-1, produced by activated microglia and infiltrating cells, was significant in susceptible DA rats. The mitochondrial:axonal size ratio did not vary in the different groups although mitochondria were smaller in spinal cords of diseased DA rats. Demyelination, observed only in areas of mononuclear infiltration of the spinal cord of diseased DA rats, was demonstrated by light microscopy and electron microscopy. CONCLUSION: We conclude that EAE at this early stage does not significantly affect CNS cellular respiration and this might underlie the reason for the recovery of diseased rats.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Medula Espinal/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/fisiologia , Astrócitos/metabolismo , Astrócitos/patologia , Axônios/metabolismo , Axônios/patologia , Caspase 1/metabolismo , Caspase 3/metabolismo , Encefalomielite Autoimune Experimental/patologia , Metabolismo Energético , Adjuvante de Freund , Vértebras Lombares , Masculino , Microglia/metabolismo , Microglia/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Tamanho Mitocondrial/fisiologia , Proteína Básica da Mielina , Ratos , Especificidade da Espécie , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA