Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
2.
Int J Pharm ; 643: 123253, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37473974

RESUMO

Treatment of colon diseases presents one of the most significant obstacles to drug delivery due to the inability to deliver sufficient drug concentration selectively to the colon. The goal of the proposed study was to develop, optimize, and assess an effective colon target delivery system of theophylline-based nanovesicles (TP-NVs) surrounded by a biodegradable polymeric shell of chitosan (CS) and Eudragit L100 (EL100) for the treatment of ulcerative colitis (UC). TP-loaded nanovesicles were fabricated using the ethanol injection method and coated with CS and EL100, respectively. We used a 32-factorial design approach to optimize the concentration of CS and EL100 to minimize particle size (PS) and maximize the cumulative amount of theophylline released (CTR) after 24 h. The optimized formulation was described using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and in vitro release. In-vivo quantification of theophylline in the gastrointestinal tract and in-vivo targeting potential in a rat model of acetic acid-induced colitis were also thoroughly evaluated. The characteristics of the optimal formula predicted by the 32-factorial design approach corresponded exceptionally well with the measured PS of 271.3 nm, the zeta potential of -39.9 mV, and CTR of 3.95, and a 99.93% after 5 and 24 h, respectively. Notably, the in vivo results in the rat model of colitis showed that the formulation with an optimized coat significantly improved theophylline distribution to the colon and markedly decreased the expression of interleukin-6 and ulcerative lesions compared to a pure theophylline solution. These outcomes elucidated the feasibility of a 32-factorial design to detect the crucial interactions between the study's components. Our findings suggested that enteric-coated nanovesicles formulations with optimal coat compositions of 0.2693% (w/v) and 0.75% (w/v) of CS and EL100, respectively, were promising carriers for colonic delivery of theophylline, a rate-limiting step in the treatment of UC.


Assuntos
Colite Ulcerativa , Colite , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Teofilina/farmacologia , Ácido Acético/efeitos adversos , Ácido Acético/metabolismo , Colo/metabolismo , Sistemas de Liberação de Medicamentos , Colite/induzido quimicamente
3.
Plants (Basel) ; 12(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37514207

RESUMO

Recently, the use of nanofertilizers has received a great deal of attention in managing plants under biotic and abiotic stresses. However, studies that elucidate the role of silicon dioxide nanoparticles (SiO2NPs) in regulating maize tolerance to drought stress are still at early stages of development. In this study, plants that were treated with SiO2NPs (0.25 g/L as foliar spray) displayed considerable improvement in the growth indices, despite being subjected to drought stress. In addition, the action of SiO2NPs led to a considerable rise in the levels of chlorophylls, proline, cell membrane integrity, leaf water content, and antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and guaiacol peroxidase (G-POX)). In contrast, an inverse trend was seen in the oxidative injury, the total amount of soluble sugars, and the activity of ascorbate peroxidase (APX). At the same time, carotenoids were unaffected in SiO2NPs-treated and non-treated plants under drought stress. The results of the molecular investigation that was conducted using qRT-PCR showed that the relative expression of the D2 protein of photosystem II (PsbD) was elevated in SiO2NPs-treated plants in response to drought stress, while the expression of the osmotic-like protein (OSM-34) and aquaporin (AQPs) was downregulated in SiO2NPs-treated plants in response to drought stress. This research could pave the way for further investigations into how SiO2NPs boost plant resistance to drought stress.

4.
Front Plant Sci ; 14: 1211595, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502705

RESUMO

Salinity is a significant abiotic stress that has a profound effect on growth, the content of secondary products, and the genotoxicity of cells. Lime, Citrus aurantifolia, is a popular plant belonging to the family Rutaceae. The interest in cultivating this plant is due to the importance of its volatile oil, which is included in many pharmaceutical industries, but C. aurantifolia plants are affected by the NaCl salinity levels. In the present study, a comet assay test has been applied to evaluate the genotoxic impact of salinity at 0, 50, 100, and 200 mM of NaCl on C. aurantifolia tissue-cultured plants. Furthermore, terpene gene expression was investigated using a semi-quantitative real-time polymerase chain reaction. Results from the two analyses revealed that 200 mM of NaCl stress resulted in high levels of severe damage to the C. aurantifolia plants' DNA tail 21.8%, tail length 6.56 µm, and tail moment 3.19 Unit. The relative highest expression of RtHK and TAT genes was 2.08, and 1.693, respectively, when plants were exposed to 200 mM of NaCl, whereas pv4CL2RT expressed 1.50 in plants subjected to 100 mM of NaCl. The accumulation of transcripts for the RTMYB was 0.951 when plants were treated with NaCl at 50 mM, and RtGPPS gene was significantly decreased to 0.446 during saline exposure at 100 mM. We conclude that the comet assay test offers an appropriate tool to detect DNA damage as well as RtHK, TAT, and pv4CL2RT genes having post-transcriptional regulation in C. aurantifolia plant cells under salinity stress. Future studies are needed to assess the application of gene expression and comet assay technologies using another set of genes that show vulnerability to different stresses on lime and other plants.

5.
ACS Omega ; 8(21): 18714-18725, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37273643

RESUMO

The barrier functionalities of the skin offer a major but not insuperable hindrance for fabrication of skin delivery effective systems. This work aimed to develop an optimized lipid polymer hybrid nanoparticle and assess the skin delivery effectiveness of hydrocortisone (9.872 ± 0.361 × 10-3 cm2/h) of a drug through the skin from an optimized formulation when compared with a drug solution. Meanwhile, histological examination after topical application of the optimized formulation showed a safe increase in epidermal thickness. In vivo, the optimized formulation showed promising anti-inflammatory activity in a croton oil-induced ear rosacea model. As an excellent anti-inflammatory agent, these findings propose that the use of lipomers could be a promising strategy to improve the topical effectiveness of hydrocortisone acetate (HCA) against inflammatory diseases. Collectively, these results support our view that lipid polymer hybrid nanoparticles can proficiently deliver hydrocortisone to the skin in treating skin inflammatory conditions.

6.
Int J Pharm ; 638: 122917, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37019321

RESUMO

Atorvastatin calcium (AC), a cholesterol-lowering medication, has limited oral bioavailability (14 %) and adverse impacts on the gastrointestinal tract (GIT), liver, and muscle. So, in an effort to improve the poor availability and overcome the hepatotoxicity complications attendant to peroral AC administration, transdermal transfersomal gel (AC-TFG) was developed as a convenient alternative delivery technique. The impact of utilizing an edge activator (EA) and varying the phosphatidylcholine (PC): EA molar ratio on the physico-chemical characteristics of the vesicles was optimized through a Quality by Design (QbD) strategy. The optimal transdermal AC-TFG was tested in an ex-vivo permeation study employing full-thickness rat skin, Franz cell experiments, an in-vivo pharmacokinetics and pharmacodynamics (PK/PD) evaluation, and a comparison to oral AC using poloxamer-induced dyslipidemic Wister rats. The optimized AC-loaded TF nanovesicles predicted by the 23-factorial design strategy had a good correlation with the measured vesicle diameter of 71.72 ± 1.159 nm, encapsulation efficiency of 89.13 ± 0.125 %, and cumulative drug release of 88.92 ± 3.78 % over 24 h. Ex-vivo data revealed that AC-TF outperformed a free drug in terms of permeation. The pharmacokinetic parameters of optimized AC-TFG demonstrated 2.5- and 13.3-fold significant improvements in bioavailability in comparison to oral AC suspension (AC-OS) and traditional gel (AC-TG), respectively. The transdermal vesicular technique preserved the antihyperlipidemic activity of AC-OS without increasing hepatic markers. Such enhancement was proven histologically by preventing the hepatocellular harm inflicted by statins. The results showed that the transdermal vesicular system is a safe alternative way to treat dyslipidemia with AC, especially when given over a long period of time.


Assuntos
Dislipidemias , Poloxâmero , Ratos , Animais , Administração Cutânea , Atorvastatina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Ratos Wistar , Pele/metabolismo , Lecitinas/metabolismo , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Disponibilidade Biológica , Tamanho da Partícula
7.
Pharmaceutics ; 15(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37111610

RESUMO

The objective of the current work was to fabricate, optimize and assess olive oil/phytosomal nanocarriers to improve quercetin skin delivery. Olive oil/phytosomal nanocarriers, prepared by a solvent evaporation/anti-solvent precipitation technique, were optimized using a Box-Behnken design, and the optimized formulation was appraised for in vitro physicochemical characteristics and stability. The optimized formulation was assessed for skin permeation and histological alterations. The optimized formulation (with an olive oil/PC ratio of 0.166, a QC/PC ratio of 1.95 and a surfactant concentration of 1.6%), and with a particle diameter of 206.7 nm, a zeta potential of -26.3 and an encapsulation efficiency of 85.3%, was selected using a Box-Behnken design. The optimized formulation showed better stability at ambient temperature when compared to refrigerating temperature (4 °C). The optimized formulation showed significantly higher skin permeation of quercetin when compared to an olive-oil/surfactant-free formulation and the control (~1.3-fold and 1.9-fold, respectively). It also showed alteration to skin barriers without remarkable toxicity aspects. Conclusively, this study demonstrated the use of olive oil/phytosomal nanocarriers as potential carriers for quercetin-a natural bioactive agent-to improve its skin delivery.

8.
Plants (Basel) ; 12(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679101

RESUMO

The verification of taxonomic identities is of the highest significance in the field of biological study and categorization. Morpho-molecular characterization can clarify uncertainties in distinguishing between taxonomic groups. In this study, we characterized five local taxa of the genus Cichorium using morphological and molecular markers for taxonomic authentication and probably future genetic improvement. The five Cichorium taxa grown under the Mediterranean climate using morphological traits and molecular markers showed variations. The examined taxa showed a widespread range of variations in leaf characteristics, i.e., shape, type, texture, margin, and apex and cypsela characteristics i.e., shape, color, and surface pattern. The phylogenetic tree categorized the Cichorium intybus var. intybus and C. intybus var. foliosum in a single group, whereas C. endivia var. endivia was grouped separately. However, C. endivia var. crispum and C. endivia subsp. pumilum were classified as a cluster. The recorded variance between classes using the molecular markers SCoT, ISSR, and RAPD was documented at 34.43%, 36.62%, and 40.34%, respectively. Authentication using molecular tools proved the usefulness of a dichotomous indented key, as revealed by morphological identification. The integrated methodology using morphological and molecular assessment could support improved verification and authentication of the various taxa of chicory. It seems likely that the Egyptian chicory belongs to C. endivia subsp. pumilum.

9.
AMB Express ; 12(1): 137, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319914

RESUMO

As a consequence of Covid-19 pandemic, the basic lab consumables are in shortage, especially in the low-income countries. Thus, the main objective of the present study is to develop and evaluate homemade solution to isolate plasmid. To pursue this objective, RNase A was overexpressed in Bl21 DE3 cells (E. coli strain) and prepared as crude refolding reaction with proper activity. Also, lysis buffers, neutralization buffer, and washing buffers were prepared. The homemade miniprep kit showed successful isolation of the px48SpCas9 plasmid. The prepared plasmid purity was enough to be used successfully in PCR amplification. In addition, to get extra benefits from this study, seven primers were designed to match the plasmid backbone to produce DNA ladder (100-1500 bp). In conclusion, we were able to have attainable working solutions for plasmid miniprep and DNA ladder.

10.
AAPS PharmSciTech ; 24(1): 6, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36447021

RESUMO

Mesoporous silica nanoparticles (MSNPs) have been proposed as a potential approach for stabilizing the amorphous state of poorly water-soluble actives. This study aimed to improve the physiochemical characteristics of poorly water-soluble quercetin (QT) through a novel lyophilized formulation. Various parameters, including solvent polarity, QT-carrier mass ratio, and adsorption time, were studied to improve the loading of QT into MSNPs. The optimized loaded MSNPs were formulated into lyophilized tablets through a freeze-drying process using hydrophilic polyvinylpyrrolidone (PVP-K30) as a polymeric stabilizer and water-soluble sucrose as a cryoprotectant. The effect of PVP-K30 and sucrose on the particle size, disintegration time, friability, and time required to release 90% of QT were studied using 32 full factorial design. The optimized formula was characterized using different evaluating techniques; for instance, differential scanning calorimetry, X-ray diffractometry, Fourier transform infrared spectroscopy, drug content, moisture content, and saturation solubility. The analysis proved that QT was consistently kept in the nanosize range with a narrow size distribution. The loaded silica nanoparticles and the optimized formulation are in an amorphous state devoid of any chemical interaction with the silica matrix or the lyophilization excipients. The optimized formula also featured low friability (less than 1%), fast disintegration (< 30 s), and a pronounced enhancement in saturation solubility and dissolution rate. Briefly, we established that the lyophilized MSNPs-based tablet would be a potential strategy for improving the rate of dissolution and, ultimately, the bioavailability of the poorly water-soluble QT.


Assuntos
Nanopartículas , Dióxido de Silício , Quercetina , Solubilidade , Comprimidos , Povidona , Excipientes , Água , Sacarose
11.
Molecules ; 27(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234993

RESUMO

Malachite green (MG) dye is a common environmental pollutant that threatens human health and the integrity of the Earth's ecosystem. The aim of this study was to investigate the potential biodegradation of MG dye by actinomycetes species isolated from planted soil near an industrial water effluent in Cairo, Egypt. The Streptomyces isolate St 45 was selected according to its high efficiency for laccase production. It was identified as S. exfoliatus based on phenotype and 16S rRNA molecular analysis and was deposited in the NCBI GenBank with the gene accession number OL720220. Its growth kinetics were studied during an incubation time of 144 h, during which the growth rate was 0.4232 (µ/h), the duplication time (td) was 1.64 d, and multiplication rate (MR) was 0.61 h, with an MG decolorization value of 96% after 120 h of incubation at 25 °C. Eleven physical and nutritional factors (mannitol, frying oil waste, MgSO4, NH4NO3, NH4Cl, dye concentration, pH, agitation, temperature, inoculum size, and incubation time) were screened for significance in the biodegradation of MG by S. exfoliatus using PBD. Out of the eleven factors screened in PBD, five (dye concentration, frying oil waste, MgSO4, inoculum size, and pH) were shown to be significant in the decolorization process. Central composite design (CCD) was applied to optimize the biodegradation of MG. Maximum decolorization was attained using the following optimal conditions: food oil waste, 7.5 mL/L; MgSO4, 0.35 g/L; dye concentration, 0.04 g/L; pH, 4.0; and inoculum size, 12.5%. The products from the degradation of MG by S. exfoliatus were characterized using high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The results revealed the presence of several compounds, including leuco-malachite green, di(tert-butyl)(2-phenylethoxy) silane, 1,3-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, 1,4-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, 1,2-benzenedicarboxylic acid, di-n-octyl phthalate, and 1,2-benzenedicarboxylic acid, dioctyl ester. Moreover, the phytotoxicity, microbial toxicity, and cytotoxicity tests confirmed that the byproducts of MG degradation were not toxic to plants, microbes, or human cells. The results of this work implicate S. exfoliatus as a novel strain for MG biodegradation in different environments.


Assuntos
Poluentes Ambientais , Streptomyces , Biodegradação Ambiental , Corantes/química , Ecossistema , Ésteres , Humanos , Lacase , Manitol , RNA Ribossômico 16S/genética , Corantes de Rosanilina , Silanos , Solo , Streptomyces/genética , Streptomyces/metabolismo , Água
12.
Plants (Basel) ; 11(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36297756

RESUMO

Tomatoes are an important agricultural product because they contain high concentrations of bioactive substances, such as folate, ascorbate, polyphenols, and carotenoids, as well as many other essential elements. As a result, tomatoes are thought to be extremely beneficial to human health. Chemical fertilizers and insecticides are routinely utilized to maximize tomato production. In this context, microbial inoculations, particularly those containing PGPR, may be utilized in place of chemical fertilizers and pesticides. In this study, we investigated the effects of PGPR (Bacillus subtilis, and Bacillus amyloliquefaciens) and cyanobacteria when utilized alone, and in conjunction with each other, on the growth, quality, and yield of fresh fruits of tomato plants. The results showed that the inoculation significantly increased all measured parameters of tomato plants compared with the control. Combined use of B. subtilis and B. amyloliquefaciens had a positive impact on tomato yield, increasing fruit yield. Moreover, leaflet anatomical characteristics were altered, with increased thickness of the upper epidermis, lower epidermis, palisade tissue, spongy tissue, and vascular bundles. Tomato fruit quality was improved, as measured by an increased number of fruit per plant (76% increase), fruit weight (g; 33% increase), fruit height (cm; 50% increase), fruit diameter (cm; 50%), total soluble solids (TSS; 26% increase), and ascorbic acid (mg/100 g F.W.; 75% increase), relative to the control, in the first season. In addition, fruit chemical contents (N, P, and K) were increased with inoculation. The results suggest that inoculation with B. subtilis and B. amyloliquefaciens could be successfully used to enhance tomato plant growth and yield.

13.
Plants (Basel) ; 11(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36079693

RESUMO

Calla lily (Zantedeschia albomaculata (Hook.) Baill.) is an herbaceous or semi-evergreen perennial grown from rhizomes. It is commonly named "Spotted Arum". Ribosomal RNAs (rRNAs) are found in all known organisms and are known for being functionally equivalent in all of them. A completely new in vitro culture protocol was applied to Z. albomaculata with two hormones, 6-Benzylaminopurine (BAP) and kinetin, to obtain full growth and multiplication. Due to their highly conserved sequences, the analysis of small-subunit rRNAs (16S-18S rRNAs) can provide precise statistical evaluation of a wide variety of phylogenetic connections. As a result, the plant's 18S rRNA gene allowed for identification and partial sequencing. Also, the traditional floral method and the novel application technique for identification were applied to Z. albomaculata. In this paper we systemically describe the structural strategies of the plant's adaptation to the surroundings at the morphological, physiological, and anatomical scale. Most the essential oils and fatty acids found in Z. albomaculata are omega fatty acids, octadecenoic acid, linoleic acid, and palmitic acid. All these fatty acids have industrial, medicinal, and pharmaceutical applications. The significant findings are the spadix sheathing leaves, and the precipitation of raphides calcium oxalate. The mitotic index showing the division activity was recorded, and it was 17.4%. The antimicrobial activity of Z. albomaculata ethanol extract was performed via the well diffusion method. This extract has shown high activity against Escherichia coli and Pseudomonas aeruginosa, compared to its lower activity against Bacillus cereus. By defining these characteristics and in vitro culture conditions, we will be able to acclimatize the plant in greenhouses, and then transfer it to the open field. The findings of this work identified the general characteristics of Zantedeschia albomaculata as an ornamental and medicinal plant in order to acclimatize this plant for cultivation in the Mediterranean climate.

14.
Front Cell Neurosci ; 16: 958876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090787

RESUMO

Neuronal hyperexcitability in Alzheimer's disease (AD) models is thought to either contribute to the formation of amyloid beta plaques or result from their formation. Neuronal hyperexcitability has been shown in the cerebral cortex of the widely used young APPswe/PS1dE9 mice, which have accelerated plaque formation. However, it is currently unclear if hyperexcitability also occurs in CA1 hippocampal neurons of aged animals in this model. In the present work, we have compared intrinsic excitability and spontaneous synaptic inputs from CA1 pyramidal cells of 8-month-old APPswe/PS1dE9 and wildtype control mice. We find no change in intrinsic excitability or spontaneous postsynaptic currents (PSCs) between groups. We did, however, find a reduced input resistance and an increase in hyperpolarization-activated sag current. These results are consistent with findings from other aged AD model mice, including the widely used 5xFAD and 3xTg. Together these results suggest that neuronal hyperexcitability is not a consistent feature of all AD mouse models, particularly at advanced ages.

15.
Plants (Basel) ; 11(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956500

RESUMO

Many embryogenic systems have been designed to generate somatic embryos (SEs) with the morphology, biochemistry, and vigor uniformity of zygotic embryos (ZEs). During the current investigation, several antioxidants were added to the maturation media of the developing somatic embryos of date palm. Explant material was a friable embryogenic callus that was placed in maturation media containing ABA at 0.5 mg L-1, 5 g L-1 polyethylene glycol, and 10 g L-1 phytagel. Furthermore, α-tocopherol or reduced glutathione (GSH) were used separately at (25 and 50 mg L-1). These treatments were compared to a widely used date palm combination of reduced ascorbic acid (ASC) and citric acid at 150 and 100 mg L-1, respectively, and to the medium free from any antioxidants. The relative growth percentage of embryogenic callus (EC), globularization degree, differentiation%, and SEs number were significantly increased with GSH (50 mg L-1). Additionally, the latter treatment significantly enhanced the conversion% of SEs and the number of secondary somatic embryos (SSEs). ASC and citric acid treatment increased leaf length, while α-tochopherol (50 mg L-1) elevated the number of leaves plantlet-1. GSH at 50 mg L-1 catalyzed the activities of polyphenol oxidase (PPO) and peroxidase (POD) in EC and enhanced the accumulation of proteins in SEs.

16.
Plants (Basel) ; 11(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684231

RESUMO

Although the effect of folic acid (FA) and its derivatives (folates) have been extensively studied in humans and animals, their effects are still unclear in most plant species, specifically under various abiotic stress conditions. Here, the impact of FA as a foliar application at 0, 0.1, and 0.2 mM was studied on snap bean seedlings grown under non-saline and salinity stress (50 mM NaCl) conditions. The results indicated that under salinity stress, FA-treated plants revealed a significant (p ≤ 0.05) increase in growth parameters (fresh and dry weight of shoot and root). A similar trend was observed in chlorophyll (Chl b), total chlorophyll, carotenoids, leaf relative water content (RWC), proline, free amino acids (FAA), soluble sugars, cell membrane stability index (CMSI), and K, Ca, and K/Na ratio compared to the untreated plants. In contrast, a significant decrease was observed in Na and salinity-induced oxidative damage as indicated by reduced H2O2 production (using biochemical and histochemical detection methods) and rate of lipid peroxidation (malondialdehyde; MDA). This enhancement was correlated by increasing the activities of antioxidant enzymes, i.e., superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (G-POX), and ascorbate peroxidase (APX). Gene expression analyses conducted using qRT-PCR demonstrated that genes coding for the Na+/H+ antiporter protein Salt Overly Sensitive 1 (SOS1), the tonoplast-localized Na+/H+ antiporter protein (NHX1), and the multifunctional osmotic protective protein (Osmotin) were significantly up-regulated in the FA-treated plants under both saline and non-saline treatments. Generally, treatment with 0.2 mM FA was more potent than 0.1 mM and can be recommended to improve snap bean tolerance to salinity stress.

17.
AMB Express ; 12(1): 70, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680770

RESUMO

A worldwide shortage of molecular biology consumables is in surge. This includes filter tips, nucleic acid purification kits, polymerases, reverse-transcriptase, and different types of reagents which are included in viral diagnostic kits. In developing countries, the problem is even worse, since there is few capital enterprise to adopt this kind of industry. So, our aim is to develop a suitable, functional, comparable to commercial ones, and affordable in-house protocol to purify viral RNA. We sought some published and commercial RNA purification solutions to set-up an in-house protocol for viral RNA extraction. Solution was prepared accordingly. Also, LPA (linearized polyacrylamide) carrier was evaluated. The whole setting of in-house solutions with addition of LPA carrier was compared to QIAamp viral RNA minikit solutions. Our results showed that linearized polyacrylamide (LPA) carrier in homemade solutions is comparable to poly A carrier which is used in the most commercial kit. In addition, the whole setting of RNA purification solutions did achieve the purpose of viral RNA purification. Also, the result was confirmed using sputum of a Sars-Cov2 infected patient. Our experiments did end up with an affordable homemade solutions for viral RNA purification.

18.
Plants (Basel) ; 11(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35736758

RESUMO

Plant growth regulators can affect the primary and secondary metabolites of various plant species. However, the effect of paclobutrazol (PBZ) on the composition of lavender oil, especially related to the terpenoid pathway, is still unclear in literatures. In this study, the effect of PBZ as a foliar spray (0.200, 400 and 600 ppm) on the vegetative growth, phytochemical content, and both antioxidant and antimicrobial properties of lavender oil were investigated. The results indicated that all examined PBZ treatments led to a significant (p ≤ 0.05) decrease in growth parameters compared to the untreated plants. Meanwhile, the yield of essential oil was significantly decreased by the treatment of PBZ at 200 ppm compared to the control. In contrast, applied-PBZ significantly enhanced the chlorophyll content and displayed a marked change in the composition of the essential oil. This change included an obvious and significant increase in 3-carene, eucalyptol, γ-terpinene, α-pinocarvone, caryophyllene, ß-vetivenene, ß-santalol, ledol, geranyl isovalerate, farnesol, caryophyllene oxide, and phytol percentage. Generally, the highest significant values were achieved by the treatment of 400 ppm compared to the other treatments. Furthermore, this treatment showed the highest free radical scavenging activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) by 13% over the control. Additionally, to determine the antimicrobial activities of the extracted oil, each treatment was examined against two strains of Gram positive bacteria (S. aureus and B. cereus), two strains of Gram negative bacteria (S. enteritidis and E. coli), and two fungal species (C. albicans and A. niger) represent the yeast modal and filamentous fungus, respectively. The findings demonstrated that all examined species were more sensitive to the oil that was extracted from lavender plants, treated with 400 ppm PBZ, compared to the other concentrations.

19.
Plants (Basel) ; 11(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35567152

RESUMO

The effect of melatonin (MT) on potato plants under drought stress is still unclear in the available literature. Here, we studied the effect of MT as a foliar application at 0, 0.05, 0.1, and 0.2 mM on potato plants grown under well-watered and drought stressed conditions during the most critical period of early tuberization stage. The results indicated that under drought stress conditions, exogenous MT significantly (p ≤ 0.05) improved shoot fresh weight, shoot dry weight, chlorophyll (Chl; a, b and a + b), leaf relative water content (RWC), free amino acids (FAA), non-reducing sugars, total soluble sugars, cell membrane stability index, superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (G-POX), and ascorbate peroxidase (APX) compared to the untreated plants. Meanwhile, carotenoids, proline, methylglyoxal (MG), H2O2, lipid peroxidation (malondialdehyde; MDA) and abscisic acid (ABA) were significantly decreased compared to the untreated plants. These responses may reveal the protective role of MT against drought induced carbonyl/oxidative stress and enhancing the antioxidative defense systems. Furthermore, tuber yield was differentially responded to MT treatments under well-watered and drought stressed conditions. Since, applied-MT led to an obvious decrease in tuber yield under well-watered conditions. In contrast, under drought conditions, tuber yield was substantially increased by MT-treatments up to 0.1 mM. These results may imply that under water deficiency, MT can regulate the tuberization process in potato plants by hindering ABA transport from the root to shoot system, on the one hand, and by increasing the non-reducing sugars on the other hand.

20.
Plants (Basel) ; 11(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35448766

RESUMO

Crops around the world are facing a diversity of environmental problems, of which high temperatures are proving to be the most serious threat to crops. Polyamine putrescine (Put) acts as a master growth regulator that contributes to optimal plant growth and development and increased stress tolerance. Here, the current study aimed to elucidate how Put functions in regulating chlorophyll (Chl) metabolism, oxidative stress, and antioxidant defense, as well as to characterize the expression of genes related to heat stress in tomato seedlings under such stress. The results revealed that Put treatment significantly attenuates heat-induced damage by promoting biomass production, increasing photosynthetic efficiency, and inhibiting excessive production of oxidative stress markers. Heat stress markedly decreased the Chl content in the tomato leaf and accelerated the leaf yellowing process. However, Put-treated tomato seedlings showed a higher Chl content, which could be associated with the functions of Put in elevating PBGD activity (Chl biosynthesis enzyme) and suppressing the activity of the Chl catabolic enzyme (Chlase and MDCase). Under high-temperature stress, the expression levels of the gene encoding factors involved in Chl biosynthesis and Chl catabolism were significantly down- and upregulated, respectively, and this trend was reversed in Put-treated heat-stressed seedlings. In addition, exogenous application of Put boosted the activity of antioxidant enzymes, along with the levels of expression of their encoding genes, only in plants that were heat stressed. Furthermore, the expression levels of heat-shock-related genes (HSP90, HSP70, and HsfA1) were elevated in Put-treated, high-temperature-stressed tomato seedlings. Taken together, our results indicate that Put treatment significantly increases the heat tolerance of tomato seedlings, by elevating Chl concentrations and suppressing Chl catabolic enzyme activity, modulating endogenous free PA content, increasing antioxidant defense efficiency, and upregulating the expression of heat-shock-related genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA