Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34663733

RESUMO

We demonstrate how programmable shape evolution and deformation can be induced in plant-based natural materials through standard digital printing technologies. With nonallergenic pollen paper as the substrate material, we show how specific geometrical features and architectures can be custom designed through digital printing of patterns to modulate hygrophobicity, geometry, and complex shapes. These autonomously hygromorphing configurations can be "frozen" by postprocessing coatings to meet the needs of a wide spectrum of uses and applications. Through computational simulations involving the finite element method and accompanying experiments, we develop quantitative insights and a general framework for creating complex shapes in eco-friendly natural materials with potential sustainable applications for scalable manufacturing.


Assuntos
Papel , Tecnologia , Simulação por Computador
2.
Nat Commun ; 11(1): 1449, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193375

RESUMO

Pollen's practically-indestructible shell structure has long inspired the biomimetic design of organic materials. However, there is limited understanding of how the mechanical, chemical, and adhesion properties of pollen are biologically controlled and whether strategies can be devised to manipulate pollen beyond natural performance limits. Here, we report a facile approach to transform pollen grains into soft microgel by remodeling pollen shells. Marked alterations to the pollen substructures led to environmental stimuli responsiveness, which reveal how the interplay of substructure-specific material properties dictates microgel swelling behavior. Our investigation of pollen grains from across the plant kingdom further showed that microgel formation occurs with tested pollen species from eudicot plants. Collectively, our experimental and computational results offer fundamental insights into how tuning pollen structure can cause dramatic alterations to material properties, and inspire future investigation into understanding how the material science of pollen might influence plant reproductive success.


Assuntos
Ciência dos Materiais , Microgéis/química , Pólen/química , Biomimética/métodos , Química Computacional , Epitopos/química , Epitopos/imunologia , Esterificação , Dureza , Hidrólise , Hidróxidos/química , Microscopia de Fluorescência , Pectinas/química , Pectinas/imunologia , Pólen/imunologia , Polinização/fisiologia , Compostos de Potássio/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Biomaterials ; 32(6): 1465-76, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21145586

RESUMO

The bioreactor unit of bioartificial kidneys contains porous membranes seeded with renal cells. For clinical applications, it is mandatory that human primary renal proximal tubule cells (HPTCs) form differentiated epithelia on the membranes. Here, we show that HPTCs do not grow and survive on a variety of polymeric membrane materials. This applies also to membranes consisting of polysulfone/polyvinylpyrrolidone (PSF/PVP), which have been used in the bioreactor unit of bioartificial kidneys after coating with an extracellular matrix (ECM). Our data reveal that coating with just an ECM does not sufficiently improve HPTC performance on non-HPTC-compatible membrane materials. On the other hand, we have characterized the effects of a variety of surface treatments and coatings, and found that double coating with 3,4-dihydroxy-l-phenylalanine and an ECM markedly improves HPTC performance and results in the formation of differentiated epithelia on PSF/PVP membranes. We have also synthesized alternative membrane materials, and characterized membranes consisting of polysulfone and Fullcure. We found that these membranes sustain proper HPTC performance without the need for surface treatments or coatings. Together, our data reveal that the materials that have been previously applied in bioartificial kidneys are not suitable for applications with HPTCs. This study elucidates the types of membrane materials and coatings that are favorable for the bioreactor unit of bioartificial kidneys.


Assuntos
Reatores Biológicos , Rim/citologia , Rins Artificiais , Membranas Artificiais , Materiais Biocompatíveis/química , Adesão Celular/fisiologia , Linhagem Celular , Células Cultivadas , Humanos , Espectroscopia Fotoeletrônica , Polímeros/química , Porosidade , Povidona/química , Sulfonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA