Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Endocr Soc ; 8(9): bvae137, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39109292

RESUMO

Context: Variants in melanocortin 4 receptor (MC4R) pathway-related genes have been associated with obesity. The association of these variants with cardiometabolic parameters are not fully known. Objective: We compared the severity of obesity and cardiometabolic risk markers in children with MC4R pathway-related clinically reported genetic variants relative to children without these variants. Methods: A retrospective chart review was performed in children with obesity who underwent multigene panel testing for monogenic obesity. Results: Data on a total of 104 children were examined, with 93 (89%) identified as White. Thirty-nine (37.5%) patients had clinically reported variants in the MC4R pathway, and the remaining 65 patients did not have reported MC4R pathway-related variants. Among the MC4R-related variants, PCSK1 risk alleles were most common, reported in 15 children (14%). The maximum body mass index percent of the 95th percentile was not different between groups (P = .116). Low-density lipoprotein cholesterol (LDL-C) was not different between groups (P = .132). However, subgroup analysis demonstrated higher LDL cholesterol in children with the PCSK1 c.661A>G risk allele relative to those with MC4R-related variant of uncertain significance (P = .047), negative genetic testing (P = .012), and those with non-MC4R related variants (P = .048). The blood pressure, fasting glucose, hemoglobin A1C, total cholesterol, alanine transaminase, and high-density lipoprotein cholesterol were not different between groups. Conclusion: Variants in the MC4R pathway-related genes were not associated with severity of obesity and cardiometabolic risk markers except for the c.661A>G PCSK1 risk allele, which was associated with higher LDL-C levels.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39005225

RESUMO

OBJECTIVES: To compare long-term transplant outcomes (organ rejection and retransplant) of simultaneous liver/kidney transplant (SLK) versus isolated kidney transplant (IK) for patients with primary hyperoxaluria (PH). METHODS: The Rare Kidney Stone Consortium PH registry was queried to identify patients with PH who underwent SLK or IK from 1999 to 2021. Patient characteristics and long-term transplant outcomes were abstracted and analyzed. Statistical comparisons were performed with Kaplan-Meier plots and Cox proportional hazards models. RESULTS: We identified 250 patients with PH, of whom 35 received care at Mayo Clinic and underwent SLK or IK. Patients who underwent SLK as their index transplant had lower odds of kidney rejection than did those who underwent IK (hazard ratio [HR], 0.29; 95% confidence interval [CI], 0.08-0.99; p = .048). The immunoprotective effect of concomitant liver and kidney transplant appeared to enhance outcomes for patients with PH. Additionally, the odds of retransplant were significantly lower for patients who underwent SLK as their index transplant than for those who underwent IK (HR, 0.08; 95% CI, 0.02-0.42; p = .003). Of five patients who underwent IK and had maintained graft function for at least 5 years after transplant, three (60%) had documented vitamin B6 responsiveness. CONCLUSIONS: Patients with PH who underwent SLK had a lower risk of kidney rejection and retransplant than those who underwent IK. Accurate genetic assessment for vitamin B6 responsiveness may optimize IK allocation. Novel therapeutics, such as lumasiran, have been introduced as promising agents for the management of PH.

3.
JHEP Rep ; 6(6): 101073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38882600

RESUMO

Background & Aims: Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by excessive circulating toxic lipids, hepatic steatosis, and liver inflammation. Monocyte adhesion to liver sinusoidal endothelial cells (LSECs) and transendothelial migration (TEM) are crucial in the inflammatory process. Under lipotoxic stress, LSECs develop a proinflammatory phenotype known as endotheliopathy. However, mediators of endotheliopathy remain unclear. Methods: Primary mouse LSECs isolated from C57BL/6J mice fed chow or MASH-inducing diets rich in fat, fructose, and cholesterol (FFC) were subjected to multi-omics profiling. Mice with established MASH resulting from a choline-deficient high-fat diet (CDHFD) or FFC diet were also treated with two structurally distinct GSK3 inhibitors (LY2090314 and elraglusib [9-ING-41]). Results: Integrated pathway analysis of the mouse LSEC proteome and transcriptome indicated that leukocyte TEM and focal adhesion were the major pathways altered in MASH. Kinome profiling of the LSEC phosphoproteome identified glycogen synthase kinase (GSK)-3ß as the major kinase hub in MASH. GSK3ß-activating phosphorylation was increased in primary human LSECs treated with the toxic lipid palmitate and in human MASH. Palmitate upregulated the expression of C-X-C motif chemokine ligand 2, intracellular adhesion molecule 1, and phosphorylated focal adhesion kinase, via a GSK3-dependent mechanism. Congruently, the adhesive and transendothelial migratory capacities of primary human neutrophils and THP-1 monocytes through the LSEC monolayer under lipotoxic stress were reduced by GSK3 inhibition. Treatment with the GSK3 inhibitors LY2090314 and elraglusib ameliorated liver inflammation, injury, and fibrosis in FFC- and CDHFD-fed mice, respectively. Immunophenotyping using cytometry by mass cytometry by time of flight of intrahepatic leukocytes from CDHFD-fed mice treated with elraglusib showed reduced infiltration of proinflammatory monocyte-derived macrophages and monocyte-derived dendritic cells. Conclusion: GSK3 inhibition attenuates lipotoxicity-induced LSEC endotheliopathy and could serve as a potential therapeutic strategy for treating human MASH. Impact and Implications: LSECs under lipotoxic stress in MASH develop a proinflammatory phenotype known as endotheliopathy, with obscure mediators and functional outcomes. The current study identified GSK3 as the major driver of LSEC endotheliopathy, examined its pathogenic role in myeloid cell-associated liver inflammation, and defined the therapeutic efficacy of pharmacological GSK3 inhibitors in murine MASH. This study provides preclinical data for the future investigation of GSK3 pharmacological inhibitors in human MASH. The results of this study are important to hepatologists, vascular biologists, and investigators studying the mechanisms of inflammatory liver disease and MASH, as well as those interested in drug development.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38698664

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing globally in pediatric populations. Currently, MASLD management primarily relies on lifestyle interventions, which pose challenges in sustaining long-term weight loss. This study investigated the use of weight loss medications in MASLD care through an international survey of 166 pediatric gastroenterologists and hepatologists. The results indicated a notable interest in weight loss medications, with 38% of practitioners considering or using them, particularly glucagon-like peptide-1 receptor agonists. However, the survey also revealed a tendency among clinicians to refer patients to specialists, emphasizing the potential gap between acknowledgment and prescription practices. Challenges include the lack of guidelines and uncertainty regarding side effects. The study highlights a pressing need for education, with over 90% of the respondents expressing an interest. Our study highlights the current management of MASLD, the potential role of pharmacotherapy, and highlights avenues for improved care and education in this dynamic field.

6.
Hepatology ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517078

RESUMO

Steatohepatitis with diverse etiologies is the most common histological manifestation in patients with liver disease. However, there are currently no specific histopathological features pathognomonic for metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, or metabolic dysfunction-associated steatotic liver disease with increased alcohol intake. Digitizing traditional pathology slides has created an emerging field of digital pathology, allowing for easier access, storage, sharing, and analysis of whole-slide images. Artificial intelligence (AI) algorithms have been developed for whole-slide images to enhance the accuracy and speed of the histological interpretation of steatohepatitis and are currently employed in biomarker development. Spatial biology is a novel field that enables investigators to map gene and protein expression within a specific region of interest on liver histological sections, examine disease heterogeneity within tissues, and understand the relationship between molecular changes and distinct tissue morphology. Here, we review the utility of digital pathology (using linear and nonlinear microscopy) augmented with AI analysis to improve the accuracy of histological interpretation. We will also discuss the spatial omics landscape with special emphasis on the strengths and limitations of established spatial transcriptomics and proteomics technologies and their application in steatohepatitis. We then highlight the power of multimodal integration of digital pathology augmented by machine learning (ML)algorithms with spatial biology. The review concludes with a discussion of the current gaps in knowledge, the limitations and premises of these tools and technologies, and the areas of future research.

7.
Compr Physiol ; 13(3): 4631-4658, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358519

RESUMO

Extracellular vesicles (EVs) are membrane-bound nanoparticles released by cells and are an important means of intercellular communication in physiological and pathological states. We provide an overview of recent advances in the understanding of EV biogenesis, cargo selection, recipient cell effects, and key considerations in isolation and characterization techniques. Studies on the physiological role of EVs have relied on cell-based model systems due to technical limitations of studying endogenous nanoparticles in vivo . Several recent studies have elucidated the mechanistic role of EVs in liver diseases, including nonalcoholic fatty liver disease, viral hepatitis, cholestatic liver disease, alcohol-associated liver disease, acute liver injury, and liver cancers. Employing disease models and human samples, the biogenesis of lipotoxic EVs downstream of endoplasmic reticulum stress and microvesicles via intracellular activation stress signaling are discussed in detail. The diverse cargoes of EVs including proteins, lipids, and nucleic acids can be enriched in a disease-specific manner. By carrying diverse cargo, EVs can directly confer pathogenic potential, for example, recruitment and activation of monocyte-derived macrophages in NASH and tumorigenicity and chemoresistance in hepatocellular carcinoma. We discuss the pathogenic role of EVs cargoes and the signaling pathways activated by EVs in recipient cells. We review the literature that EVs can serve as biomarkers in hepatobiliary diseases. Further, we describe novel approaches to engineer EVs to deliver regulatory signals to specific cell types, and thus use them as therapeutic shuttles in liver diseases. Lastly, we identify key lacunae and future directions in this promising field of discovery and development. © 2023 American Physiological Society. Compr Physiol 13:4631-4658, 2023.


Assuntos
Vesículas Extracelulares , Hepatopatia Gordurosa não Alcoólica , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Modelos Biológicos , Transporte Biológico
8.
Hepatol Commun ; 7(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267252

RESUMO

BACKGROUND: NASH is the progressive form of NAFLD characterized by lipotoxicity, hepatocyte injury, tissue inflammation, and fibrosis. Previously, Rho-associated protein kinase (ROCK) 1 has been implicated in lipotoxic signaling in hepatocytes in vitro and high-fat diet-induced lipogenesis in vivo. However, whether ROCK1 plays a role in liver inflammation and fibrosis during NASH is unclear. Here, we hypothesized that pathogenic activation of ROCK1 promotes murine NASH pathogenesis. METHODS AND RESULTS: Patients with NASH had increased hepatic ROCK1 expression compared with patients with fatty liver. Similarly, hepatic ROCK1 levels and activity were increased in mice with NASH induced by a western-like diet that is high in fat, fructose, and cholesterol (FFC). Hepatocyte-specific ROCK1 knockout mice on the FFC diet displayed a decrease in liver steatosis, hepatic cell death, liver inflammation, and fibrosis compared with littermate FFC-fed controls. Mechanistically, these effects were associated with a significant attenuation of myeloid cell recruitment. Interestingly, myeloid cell-specific ROCK1 deletion did not affect NASH development in FFC-fed mice. To explore the therapeutic opportunities, mice with established NASH received ROCKi, a novel small molecule kinase inhibitor of ROCK1/2, which preferentially accumulates in liver tissue. ROCK inhibitor treatment ameliorated insulin resistance and decreased liver injury, inflammation, and fibrosis. CONCLUSIONS: Genetic or pharmacologic inhibition of ROCK1 activity attenuates murine NASH, suggesting that ROCK1 may be a therapeutic target for treating human NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Quinases Associadas a rho , Animais , Humanos , Camundongos , Dieta Hiperlipídica/efeitos adversos , Fibrose , Hepatócitos/metabolismo , Inflamação/tratamento farmacológico , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/enzimologia , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética
9.
Pharmacol Ther ; 244: 108372, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36894027

RESUMO

The increasing prevalence of the metabolic syndrome (MetS) is a threat to global public health due to its lethal complications. Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the MetS characterized by hepatic steatosis, which is potentially progressive to the inflammatory and fibrotic nonalcoholic steatohepatitis (NASH). The adipose tissue (AT) is also a major metabolic organ responsible for the regulation of whole-body energy homeostasis, and thereby highly involved in the pathogenesis of the MetS. Recent studies suggest that endothelial cells (ECs) in the liver and AT are not just inert conduits but also crucial mediators in various biological processes via the interaction with other cell types in the microenvironment both under physiological and pathological conditions. Herein, we highlight the current knowledge of the role of the specialized liver sinusoidal endothelial cells (LSECs) in NAFLD pathophysiology. Next, we discuss the processes through which AT EC dysfunction leads to MetS progression, with a focus on inflammation and angiogenesis in the AT as well as on endothelial-to-mesenchymal transition of AT-ECs. In addition, we touch upon the function of ECs residing in other metabolic organs including the pancreatic islet and the gut, the dysregulation of which may also contribute to the MetS. Finally, we highlight potential EC-based therapeutic targets for human MetS, and NASH based on recent achievements in basic and clinical research and discuss how to approach unsolved problems in the field.


Assuntos
Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Síndrome Metabólica/metabolismo , Células Endoteliais/metabolismo , Fígado/metabolismo , Cirrose Hepática/complicações
10.
Mol Genet Metab ; 138(4): 107559, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36965289

RESUMO

Phosphomannomutase-2-congenital disorder of glycosylation (PMM2-CDG) is the most common CDG and presents with highly variable features ranging from isolated neurologic involvement to severe multi-organ dysfunction. Liver abnormalities occur in in almost all patients and frequently include hepatomegaly and elevated aminotransferases, although only a minority of patients develop progressive hepatic fibrosis and liver failure. No curative therapies are currently available for PMM2-CDG, although investigation into several novel therapies is ongoing. We report the first successful liver transplantation in a 4-year-old patient with PMM2-CDG. Over a 3-year follow-up period, she demonstrated improved growth and neurocognitive development and complete normalization of liver enzymes, coagulation parameters, and carbohydrate-deficient transferrin profile, but persistently abnormal IgG glycosylation and recurrent upper airway infections that did not require hospitalization. Liver transplant should be considered as a treatment option for PMM2-CDG patients with end-stage liver disease, however these patients may be at increased risk for recurrent bacterial infections post-transplant.


Assuntos
Defeitos Congênitos da Glicosilação , Transplante de Fígado , Fosfotransferases (Fosfomutases) , Feminino , Humanos , Pré-Escolar , Glicosilação , Seguimentos , Fosfotransferases (Fosfomutases)/genética , Defeitos Congênitos da Glicosilação/complicações , Defeitos Congênitos da Glicosilação/genética , Fígado/metabolismo , Imunoglobulina G
11.
Hepatology ; 78(2): 649-669, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36626620

RESUMO

LSECs are a unique population of endothelial cells within the liver and are recognized as key regulators of liver homeostasis. LSECs also play a key role in liver disease, as dysregulation of their quiescent phenotype promotes pathological processes within the liver including inflammation, microvascular thrombosis, fibrosis, and portal hypertension. Recent technical advances in single-cell analysis have characterized distinct subpopulations of the LSECs themselves with a high resolution and defined their gene expression profile and phenotype, broadening our understanding of their mechanistic role in liver biology. This article will review 4 broad advances in our understanding of LSEC biology in general: (1) LSEC heterogeneity, (2) LSEC aging and senescence, (3) LSEC role in liver regeneration, and (4) LSEC role in liver inflammation and will then review the role of LSECs in various liver pathologies including fibrosis, DILI, alcohol-associated liver disease, NASH, viral hepatitis, liver transplant rejection, and ischemia reperfusion injury. The review will conclude with a discussion of gaps in knowledge and areas for future research.


Assuntos
Células Endoteliais , Hepatopatias , Humanos , Células Endoteliais/metabolismo , Fígado/patologia , Hepatopatias/patologia , Fibrose , Inflamação/metabolismo
14.
Front Immunol ; 13: 983255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091042

RESUMO

Background: During liver injury, liver sinusoidal endothelial cells (LSECs) dysfunction and capillarization promote liver fibrosis. We have previously reported that the LSEC vascular cell adhesion molecule 1 (VCAM1) plays a key role in liver inflammation in nonalcoholic steatohepatitis (NASH) and we now aim to uncover its role in LSEC capillarization and liver fibrosis. Methods: Wild-type C57BL/6J mice were fed either chow or high fat, fructose and cholesterol diet to induce NASH and treated with either anti-VCAM1 neutralizing antibody or control isotype antibody. Inducible endothelial cell-specific Vcam1 deleted mice (Vcam1Δend ) and control mice (Vcam1fl/fl ) were fed choline-deficient high-fat diet (CD-HFD) to induce NASH or injected with carbon tetrachloride to induce liver fibrosis. LSECs isolated from Vcam1fl/fl or Vcam1Δend and hepatic stellate cells (HSCs) isolated from wild-type mice were cocultured in a 3-D system or a µ-Slide 2 well co-culture system. Results: Immunostaining for Lyve1 (marker of differentiated LSECs) was reduced in Vcam1fl/fl mice and restored in Vcam1Δend mice in both NASH and liver fibrosis models. Co-immunostaining showed increased α-smooth muscle actin in the livers of Vcam1fl/fl mice in areas lacking Lyve1. Furthermore, scanning electron microscopy showed reduced LSEC fenestrae in the Vcam1fl/fl mice but not Vcam1Δend mice in both injury models, suggesting that VCAM1 promotes LSEC capillarization during liver injury. HSCs profibrogenic markers were reduced when cocultured with LSECs from CD-HFD fed Vcam1Δend mice compared to Vcam1fl/fl mice. Furthermore, recombinant VCAM1 activated the Yes-associated protein 1 pathway and induced a fibrogenic phenotype in HSCs in vitro, supporting the profibrogenic role of LSEC VCAM1. Conclusion: VCAM1 is not just a scaffold for leukocyte adhesion during liver injury, but also a modulator of LSEC capillarization and liver fibrosis.


Assuntos
Células Endoteliais , Cirrose Hepática , Fígado , Hepatopatia Gordurosa não Alcoólica , Molécula 1 de Adesão de Célula Vascular , Animais , Biomarcadores/metabolismo , Capilares/metabolismo , Capilares/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fígado/irrigação sanguínea , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Molécula 1 de Adesão de Célula Vascular/biossíntese , Molécula 1 de Adesão de Célula Vascular/genética
15.
Hepatology ; 76(2): E47, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35384005
16.
J Hepatol ; 77(3): 723-734, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35421427

RESUMO

BACKGROUND & AIMS: Liver sinusoidal endothelial cells (LSECs) are ideally situated to sense stiffness and generate angiocrine programs that potentially regulate liver fibrosis and portal hypertension. We explored how specific focal adhesion (FA) proteins parlay LSEC mechanotransduction into stiffness-induced angiocrine signaling in vitro and in vivo. METHODS: Primary human and murine LSECs were placed on gels with incremental stiffness (0.2 kPa vs. 32 kPa). Cell response was studied by FA isolation, actin polymerization assay, RNA-sequencing and electron microscopy. Glycolysis was assessed using radioactive tracers. Epigenetic regulation of stiffness-induced genes was analyzed by chromatin-immunoprecipitation (ChIP) analysis of histone activation marks, ChIP sequencing and circularized chromosome conformation capture (4C). Mice with LSEC-selective deletion of glycolytic enzymes (Hk2fl/fl/Cdh5cre-ERT2) or treatment with the glycolysis inhibitor 3PO were studied in portal hypertension (partial ligation of the inferior vena cava, pIVCL) and early liver fibrosis (CCl4) models. RESULTS: Glycolytic enzymes, particularly phosphofructokinase 1 isoform P (PFKP), are enriched in isolated FAs from LSECs on gels with incremental stiffness. Stiffness resulted in PFKP recruitment to FAs, which paralleled an increase in glycolysis. Glycolysis was associated with expansion of actin dynamics and was attenuated by inhibition of integrin ß1. Inhibition of glycolysis attenuated a stiffness-induced CXCL1-dominant angiocrine program. Mechanistically, glycolysis promoted CXCL1 expression through nuclear pore changes and increases in NF-kB translocation. Biochemically, this CXCL1 expression was mediated through spatial re-organization of nuclear chromatin resulting in formation of super-enhancers, histone acetylation and NF-kB interaction with the CXCL1 promoter. Hk2fl/fl/Cdh5cre-ERT2 mice showed attenuated neutrophil infiltration and portal hypertension after pIVCL. 3PO treatment attenuated liver fibrosis in a CCl4 model. CONCLUSION: Glycolytic enzymes are involved in stiffness-induced angiocrine signaling in LSECs and represent druggable targets in early liver disease. LAY SUMMARY: Treatment options for liver fibrosis and portal hypertension still represent an unmet need. Herein, we uncovered a novel role for glycolytic enzymes in promoting stiffness-induced angiocrine signaling, which resulted in inflammation, fibrosis and portal hypertension. This work has revealed new targets that could be used in the prevention and treatment of liver fibrosis and portal hypertension.


Assuntos
Células Endoteliais , Hipertensão Portal , Actinas/metabolismo , Animais , Quimiocina CXCL1/metabolismo , Cromatina/metabolismo , Células Endoteliais/metabolismo , Epigênese Genética , Glicólise , Histonas/metabolismo , Humanos , Hipertensão Portal/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Mecanotransdução Celular , Camundongos , NF-kappa B/metabolismo
17.
Hepatology ; 75(6): 1627-1646, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35229330

RESUMO

With the application of modern investigative technologies, cholestatic liver diseases of genetic etiology are increasingly identified as the root cause of previously designated "idiopathic" adult and pediatric liver diseases. Here, we review advances in the field enhanced by a deeper understanding of the phenotypes associated with specific gene defects that lead to cholestatic liver diseases. There are evolving areas for clinicians in the current era specifically regarding the role for biopsy and opportunities for a "sequencing first" approach. Risk stratification based on the severity of the genetic defect holds promise to guide the decision to pursue primary liver transplantation versus medical therapy or nontransplant surgery, as well as early screening for HCC. In the present era, the expanding toolbox of recently approved therapies for hepatologists has real potential to help many of our patients with genetic causes of cholestasis. In addition, there are promising agents under study in the pipeline. Relevant to the current era, there are still gaps in knowledge of causation and pathogenesis and lack of fully accepted biomarkers of disease progression and pruritus. We discuss strategies to overcome the challenges of genotype-phenotype correlation and draw attention to the extrahepatic manifestations of these diseases. Finally, with attention to identifying causes and treatments of genetic cholestatic disorders, we anticipate a vibrant future of this dynamic field which builds upon current and future therapies, real-world evaluations of individual and combined therapeutics, and the potential incorporation of effective gene editing and gene additive technologies.


Assuntos
Carcinoma Hepatocelular , Colestase , Hepatopatias , Neoplasias Hepáticas , Carcinoma Hepatocelular/complicações , Criança , Colestase/metabolismo , Humanos , Hepatopatias/etiologia , Hepatopatias/genética , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , Prurido/etiologia
18.
J Pediatr Gastroenterol Nutr ; 74(3): 333-337, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856562

RESUMO

OBJECTIVE: Extracorporeal membrane oxygenation (ECMO)-associated direct hyperbilirubinemia (DHB) is likely multifactorial. The objective of this study is to assess the frequency and risk factors for developing direct hyperbilirubinemia while on ECMO, and its implication on the mortality of children. METHODS: We performed a retrospective study between January 2010 and January 2020. Using Mayo Clinic electronic health record, we identified children (<18 years) who required veno-arterial (VA) ECMO support. Demographics, ECMO indication, laboratory findings, and outcomes were abstracted. Illness acuity scores, including vasoactive-ionotropic score (VIS), were used to assess disease severity at time of admission. Study cohort was divided into two groups: children who developed direct hyperbilirubinemia (DHB) on ECMO and children who did not (control). DHB was defined as direct bilirubin (DB) of >1.0 mg/dL. Disease acuity and mortality rates were compared between the two groups. Logistic regression was used to analyze the risk of mortality independent of potential confounding variables. RESULTS: We identified 106 children who required ECMO support during the study period. Of those, 36 (34%) children developed DHB on ECMO. Illness acuity scores were significantly higher in the DHB group on ECMO day 2 (P = 0.046) and day 7 (P = 0.01). Mortality rate was higher in the DHB group 72%, versus 29% in the control group (P < 0.001). CONCLUSION: DHB was associated with a higher mortality rate than the control group.


Assuntos
Oxigenação por Membrana Extracorpórea , Criança , Estudos de Coortes , Oxigenação por Membrana Extracorpórea/efeitos adversos , Humanos , Hiperbilirrubinemia/etiologia , Hiperbilirrubinemia/terapia , Modelos Logísticos , Estudos Retrospectivos
19.
J Pediatr Gastroenterol Nutr ; 74(1): 138-158, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34347674

RESUMO

ABSTRACT: Pediatric acute liver failure (PALF) is a rare, rapidly progressive clinical syndrome with significant morbidity and mortality. The phenotype of PALF manifests as abrupt onset liver dysfunction, which can be brought via disparate etiology. Management is reliant upon intensive clinical care and support, often provided by the collaborative efforts of hepatologists, critical care specialists, and liver transplant surgeons. The construction of an age-based diagnostic approach, the identification of a potential underlying cause, and the prompt implementation of appropriate therapy can be lifesaving; however, the dynamic and rapidly progressive nature of PALF also demands that diagnostic inquiries be paired with monitoring strategies for the recognition and treatment of common complications of PALF. Although liver transplantation can provide a potential life-saving therapeutic option, the ability to confidently determine the certainness that liver transplant is needed for an individual child has been hampered by a lack of adequately tested clinical decision support tools and accurate predictive models. Given the accelerated progress in understanding PALF, we will provide clinical guidance to pediatric gastroenterologists and other pediatric providers caring for children with PALF by presenting the most recent advances in diagnosis, management, pathophysiology, and associated outcomes.


Assuntos
Gastroenterologia , Falência Hepática Aguda , Transplante de Fígado , Criança , Humanos , Falência Hepática Aguda/diagnóstico , Falência Hepática Aguda/etiologia , Falência Hepática Aguda/terapia , América do Norte , Estado Nutricional
20.
Am J Physiol Gastrointest Liver Physiol ; 321(1): G67-G74, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34037463

RESUMO

Liver sinusoidal endothelial cells (LSECs) are distinct subtypes of endothelial cells lining a low flow vascular bed at the interface of the liver parenchyma and the circulating immune cells and soluble factors. Emerging literature implicates LSEC in the pathogenesis and progression of nonalcoholic fatty liver disease (NAFLD). During the evolution of NAFLD, LSEC dysfunction ensues. LSECs undergo morphological and functional transformation known as "capillarization," as well as a pathogenic increase in surface adhesion molecules expression, referred to in this review as "endotheliopathy." LSECs govern the composition of hepatic immune cell populations in nonalcoholic steatohepatis (NASH) by mediating leukocyte subset adhesion through specific combinations of activated adhesion molecules and secreted chemokines. Moreover, extracellular vesicles released by hepatocyte under lipotoxic stress in NASH act as a catalyst for the inflammatory response and promote immune cell chemotaxis and adhesion. In the current review, we highlight leukocyte adhesion to LSEC as an initiating event in the sterile inflammatory response in NASH. We discuss preclinical studies targeting immune cells adhesion in NASH mouse models and potential therapeutic anti-inflammatory strategies for human NASH.


Assuntos
Adesão Celular/fisiologia , Células Endoteliais/metabolismo , Inflamação/terapia , Hepatopatia Gordurosa não Alcoólica/terapia , Animais , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA