Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(33): e2301856, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37149761

RESUMO

In response to variations in osmotic stress, in particular to hypertonicity associated with biological dysregulations, cells have developed complex mechanisms to release their excess water, thus avoiding their bursting and death. When water is expelled, cells shrink and concentrate their internal bio(macro)molecular content, inducing the formation of membraneless organelles following a liquid-liquid phase separation (LLPS) mechanism. To mimic this intrinsic property of cells, functional thermo-responsive elastin-like polypeptide (ELP) biomacromolecular conjugates are herein encapsulated into self-assembled lipid vesicles using a microfluidic system, together with polyethylene glycol (PEG) to mimic cells' interior crowded microenvironment. By inducing a hypertonic shock onto the vesicles, expelled water induces a local increase in concentration and a concomitant decrease in the cloud point temperature (Tcp ) of ELP bioconjugates that phase separate and form coacervates mimicking cellular stress-induced membraneless organelle assemblies. Horseradish peroxidase (HRP), as a model enzyme, is bioconjugated to ELPs and is locally confined in coacervates as a response to osmotic stress. This consequently increases local HRP and substrate concentrations and accelerates the kinetics of the enzymatic reaction. These results illustrate a unique way to fine-tune enzymatic reactions dynamically as a response to a physiological change in isothermal conditions.


Assuntos
Fenômenos Fisiológicos Celulares , Peptídeos , Pressão Osmótica , Peptídeos/química , Peroxidase do Rábano Silvestre , Organelas , Água
2.
Angew Chem Int Ed Engl ; 62(24): e202300511, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37083071

RESUMO

We describe here a near infrared light-responsive elastin-like peptide (ELP)-based targeted nanoparticle (NP) that can rapidly switch its size from 120 to 25 nm upon photo-irradiation. Interestingly, the targeting function, which is crucial for effective cargo delivery, is preserved after transformation. The NPs are assembled from (targeted) diblock ELP micelles encapsulating photosensitizer TT1-monoblock ELP conjugates. Methionine residues in this monoblock are photo-oxidized by singlet oxygen generated from TT1, turning the ELPs hydrophilic and thus trigger NP dissociation. Phenylalanine residues from the diblocks then interact with TT1 via π-π stacking, inducing the re-formation of smaller NPs. Due to their small size and targeting function, the NPs penetrate deeper in spheroids and kill cancer cells more efficiently compared to the larger ones. This work could contribute to the design of "smart" nanomedicines with deeper penetration capacity for effective anticancer therapies.


Assuntos
Elastina , Nanopartículas , Elastina/química , Peptídeos/química , Nanopartículas/química , Micelas
3.
Adv Sci (Weinh) ; 8(24): e2102508, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34719874

RESUMO

Design of reversible organelle-like microcompartments formed by liquid-liquid phase separation in cell-mimicking entities has significantly advanced the bottom-up construction of artificial eukaryotic cells. However, organizing the formation of artificial organelle architectures in a spatiotemporal manner within complex primitive compartments remains scarcely explored. In this work, thermoresponsive hybrid polypeptide-polymer conjugates are rationally engineered and synthesized, resulting from the conjugation of an intrinsically disordered synthetic protein (IDP), namely elastin-like polypeptide, and synthetic polymers (poly(ethylene glycol) and dextran) that are widely used as macromolecular crowding agents. Cell-like constructs are built using droplet-based microfluidics that are filled with such bioconjugates and an artificial cytoplasm system that is composed of specific polymers conjugated to the IDP. The distinct spatial organizations of two polypeptide-polymer conjugates and the dynamic assembly and disassembly of polypeptide-polymer coacervate droplets in response to temperature are studied in the cytomimetic protocells. Furthermore, a monoblock IDP with longer length is concurrently included with bioconjugates individually inside cytomimetic compartments. Both bioconjugates exhibit an identical surfactant-like property, compartmentalizing the monoblock IDP coacervates via temperature control. These findings lay the foundation for developing hierarchically structured synthetic cells with interior organelle-like structures which could be designed to localize in desired phase-separated subcompartments.


Assuntos
Células Artificiais/química , Proteínas Intrinsicamente Desordenadas/química , Substâncias Macromoleculares/química , Organelas/química , Polímeros/química , Microfluídica/métodos
4.
Bioconjug Chem ; 32(8): 1719-1728, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34240853

RESUMO

Stimuli-responsive recombinant elastin-like polypeptides (ELPs) are artificial protein polymers derived from the hydrophobic domain of tropoelastin that have attracted significant interest for drug delivery and tissue engineering applications. In the present study, we have conjugated a photosensitizer (PS) to a hydrophobic methionine-containing ELP scaffold, which upon reaction with singlet oxygen (1O2) is transformed into a hydrophilic sulfoxide derivative facilitating the disassembly of photosensitizer-delivery particles during the photodynamic therapy (PDT) process. A peripherally substituted carboxy-Zn(II)-phthalocyanine derivative (TT1) bearing a carboxyl group directly linked to the Pc-ring, and presenting an absorption maximum around 680 nm, was selected as PS which simultaneously acted as a photooxidation catalyst. A TT1-ELP[M1V3-40] conjugate was prepared from ELP[M1V3-40] modified with an alkyne group at the N-terminal chain end, and from TT1-amide-C3-azide by copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. This innovative model photooxidation sensitive PS delivery technology offers promising attributes in terms of temperature-controlled particle formation and oxidation-triggered release, narrow molar mass distribution, reproducibility, scalability, non-immunogenicity, biocompatibility, and biodegradability for pharmaceutical applications in an effort to improve the clinical effectiveness of PDT treatments.


Assuntos
Elastina/química , Oxidantes Fotoquímicos/farmacologia , Peptídeos/farmacologia , Humanos , Micelas , Estrutura Molecular , Oxidantes Fotoquímicos/química , Oxirredução , Peptídeos/química , Fotoquimioterapia
5.
Angew Chem Int Ed Engl ; 60(27): 15036-15040, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33856091

RESUMO

Biomimetic design to afford smart functional biomaterials with exquisite properties represents synthetic challenges and provides unique perspectives. In this context, elastin-like polypeptides (ELPs) recently became highly attractive building blocks in the development of lipoprotein-based membranes. In addition to the bioengineered post-translational modifications of genetically encoded recombinant ELPs developed so far, we report here a simple and versatile method to design biohybrid brush-like lipid-grafted-ELPs using chemical post-modification reactions. We have explored a combination of methionine alkylation and click chemistry to create a new class of hybrid lipoprotein mimics. Our design allowed the formation of biomimetic vesicles with controlled permeability, correlated to the temperature-responsiveness of ELPs.


Assuntos
Materiais Biomiméticos/química , Lipídeos/química , Peptídeos/química , Temperatura , Materiais Biomiméticos/síntese química , Estrutura Molecular
6.
Angew Chem Int Ed Engl ; 59(27): 11028-11036, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32207864

RESUMO

Elastin-like polypeptides (ELPs) have been proposed as a simple model of intrinsically disordered proteins (IDPs) which can form membraneless organelles by liquid-liquid phase separation (LLPS) in cells. Herein, the behavior of fluorescently labeled ELP is studied in cytomimetic aqueous two-phase system (ATPS) encapsulated protocells that are formed using microfluidics, which enabled confinement, changes in temperature, and statistical analysis. The spatial organization of ELP could be observed in the ATPS. Furthermore, changes in temperature triggered the dynamic formation and distribution of ELP-rich droplets within the ATPS, resulting from changes in conformation. Proteins were encapsulated along with ELP in the synthetic protocells and distinct partitioning properties of these proteins and ELP in the ATPS were observed. Therefore, the ability of ELP to coacervate with temperature can be maintained inside a cell-mimicking system.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Substâncias Macromoleculares/química , Organelas/química , Polietilenoglicóis/química , Temperatura
7.
Nanoscale ; 9(31): 11180-11186, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28749509

RESUMO

Localization of the photosensitizer conjugation site in amphiphilic block copolymers is shown to have a great impact on photodynamic therapy efficiency. To this end, an asymmetric multifunctional derivative of the azadipyrromethene boron difluoride chelate (aza-BODIPY) was synthesized and inserted at specific locations in polypeptide-based rod-coil amphiphilic block copolymers. A study of the photophysical properties of the vesicle nanocarriers, obtained by self-assembly of these copolymers, as well as in vitro tests on two cancer cell lines were performed. This study aims at providing guidelines for the optimization of the synthetic design of therapeutic nanomedicines with minimal amounts of photosensitive molecules.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Polímeros/química , Compostos de Boro , Células HeLa , Humanos , Melanoma Experimental , Micelas , Peptídeos
8.
Nanoscale ; 6(19): 11387-94, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25144691

RESUMO

Nanocomposites of colloidal quantum dots (QDs) integrated into conjugated polymers (CPs) are key to hybrid optoelectronics, where engineering the excitonic interactions at the nanoscale is crucial. For such excitonic operation, it was believed that exciton diffusion is essential to realize nonradiative energy transfer from CPs to QDs. In this study, contrary to the previous literature, efficient exciton transfer is demonstrated in the nanocomposites of dense QDs, where exciton transfer can be as efficient as 80% without requiring the assistance of exciton diffusion. This is enabled by uniform dispersion of QDs at high density (up to ∼70 wt%) in the nanocomposite while avoiding phase segregation. Theoretical modeling supports the experimental observation of weakly temperature dependent nonradiative energy transfer dynamics. This new finding provides the ability to design hybrid light-emitting diodes that show an order of magnitude enhanced external quantum efficiencies.

9.
ACS Nano ; 5(4): 2483-92, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21443258

RESUMO

We report on the synthesis and characterization of water-dispersible, mechanically stable conjugated polymer nanoparticles (CPNs) in shelled architecture with tunable emission and controllable photometric properties via cross-linking. Using a reprecipitation method, white-emitting polymer nanoparticles are prepared in different sizes by varying the concentration of polymer; the emission kinetics are tuned by controlling the shell formation. For this purpose, polyfluorene derivatives containing azide groups are selected that can be decomposed under UV light to generate very reactive species, which opportunely facilitate the inter- and intra-cross-linking of polymer chains to form shells. Nanoparticles before and after UV treatment are characterized by various techniques. Their size and morphologies are determined by using dynamic light scattering (DLS) measurements and imaging techniques including scanning electron microscopy (SEM) and atomic force microscopy (AFM). For optical characterization, UV-vis and steady-state and time-resolved fluorescent spectroscopies are performed. Solid-state behaviors of these CPNs are also investigated by forming films through drop-casting. Moreover, the photometric calculations are also performed for films and dispersions to determine the color quality. A device has been constructed to show proof-of-principle white light generation from these nanoparticles. Additionally, mechanical stability studies are performed and demonstrated that these nanoparticles are indeed mechanically stable by removing the solvent after cross-linking using a freeze-dryer and redispersing in water and THF. Optical and imaging data confirm that the redispersed particles preserve their shapes and sizes after cross-linking.

10.
Chem Commun (Camb) ; 46(36): 6762-4, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20717562

RESUMO

Vertically aligned multi-walled carbon nanotubes (MWCNTs) synthesized by the alcohol catalytic CVD (ACCVD) technique are dispersed in water with the aid of water-dispersible conjugated polymer nanoparticles (CPNs). The interactions between CPNs and CNTs are studied with spectroscopy (UV-Vis, fluorescence and Raman) and electron microscopy techniques are used to confirm attachment of CPNs to the CNT sidewalls.


Assuntos
Nanopartículas/química , Nanotubos de Carbono/química , Polímeros/química , Água/química , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA