Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Gerontol ; 196: 112574, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39236870

RESUMO

PURPOSE: Muscle quality is explained by the ratio between muscle size and strength. Conventionally, muscle size is evaluated without considering the composition of contractile and non-contractile tissues in muscle, hence the influence of non-contractile tissues on muscle quality is not fully understood, especially within aging muscle. This study investigated the differences in intramuscular non-contractile tissues between different age and sex groups, and investigated their influence on muscle quality. METHODS: Eighty-two older and 64 young females and males participated. Muscle cross-sectional area (quadriceps and hamstrings), separating contractile and non-contractile areas, was calculated from the magnetic resonance image of the right mid-thigh. Maximal voluntary isometric knee extension and flexion torque was measured. Torque/muscle area and torque/contractile area were calculated for each age and sex group. RESULTS: Non-contractile/muscle area was higher in older than in young individuals in both muscle groups (p < 0.05), and it was greater in the hamstrings than in the quadriceps. For the hamstrings, torque/muscle area was lower in older than in young individuals in both sexes (p < 0.05). However, torque/contractile area did not show the differences between age groups, only between sexes (males>females) (p < 0.05). CONCLUSIONS: The results indicate that 1) the presence of non-contractile tissues varies by age and muscle groups, 2) the extensive presence of non-contractile tissues can contribute to the underestimation of its muscle quality, and 3) the sex differences in muscle quality are influenced by factors other than muscle composition.

2.
Med Sci Sports Exerc ; 56(7): 1265-1274, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451737

RESUMO

PURPOSE: This study aimed to determine physiological and metabolic responses to two different sprint interval exercises (SIE) matched for total sprint duration and sprint-rest ratio. METHODS: After having measured peak oxygen uptake (V̇O 2peak ), 14 healthy males (27.1 ± 4.8 yr, 169.6 ± 6.0 cm, 64.5 ± 8.4 kg, V̇O 2peak : 47.2 ± 7.7 mL·kg -1 ·min -1 ) performed four 10-s sprints with 80-s recovery (SIE10) and two 20-s sprints with 160-s recovery (SIE20) on different occasions in a counterbalanced crossover manner. Pulmonary V̇O 2 and changes in tissue oxygenation index (∆TOI) at vastus lateralis (VL) and rectus femoris (RF) were measured during the SIE. Furthermore, T2-weighted magnetic resonance imaging was taken immediately before and after the SIE to determine the activation levels of VL, RF, vastus medialis, vastus intermedius, adductor magnus, biceps femoris long head, semitendinosus, and semimembranosus at 50% of right thigh length. RESULTS: In SIE10, increases in V̇O 2 and ∆TOI at VL and RF plateaued after the second sprint, whereas session-averaged ∆TOI was greater in SIE20 than SIE10 in both muscles (VL: 20.9 ± 7.4 vs 14.2% ± 5.9%, RF: 22.8 ± 9.3 vs 12.9% ± 6.6%, P = 0.00). Although both SIE significantly increased T2 values in all eight muscles, those magnitudes were similar between the conditions (SIE10 vs SIE20: 5%-16% vs 8%-16%). CONCLUSIONS: This study showed blunted responses of whole-body (V̇O 2 ) and peripheral (∆TOI) oxidative responses with successive sprints (sprint 1 < sprints 2-4) in SIE10, suggesting that increasing sprint repetitions does not necessarily induce greater oxidative metabolism or stimulus. Moreover, greater peripheral oxygen extraction (∆TOI) was achieved with SIE20, whereas %changes of T2 indicates that the thigh muscles were similarly activated between the SIE conditions.


Assuntos
Estudos Cross-Over , Músculo Esquelético , Consumo de Oxigênio , Corrida , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Adulto , Adulto Jovem , Corrida/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Músculo Quadríceps/fisiologia , Músculo Quadríceps/metabolismo , Treinamento Intervalado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética
3.
Med Sci Sports Exerc ; 55(3): 590-600, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730966

RESUMO

PURPOSE: Sprinters exhibit inhomogeneous muscularity corresponding to musculoskeletal demand for sprinting execution. An inhomogeneous morphology would affect the mass distribution, which in turn may affect the mechanical difficulty in moving from an inertia perspective; however, the morphological characteristics of sprinters from the inertia perspective have not been examined. Here we show no corresponding differences in the normalized mass and normalized moment of inertia between the sprinters and untrained nonsprinters. METHODS: We analyzed fat- and water-separated magnetic resonance images from the lower limbs of 11 male sprinters (100 m best time of 10.44-10.83 s) and 12 untrained nonsprinters. We calculated the inertial properties by identifying the tissue of each voxel and combining the literature values for each tissue density. RESULTS: The lower-limb relative mass was significantly larger in sprinters (18.7% ± 0.7% body mass) than in nonsprinters (17.6% ± 0.6% body mass), whereas the normalized moment of inertia of the lower limb around the hip in the anatomical position was not significantly different (0.044 ± 0.002 vs 0.042 ± 0.002 [a. u.]). The thigh relative mass in sprinters (12.9% ± 0.4% body mass) was significantly larger than that in nonsprinters (11.9% ± 0.4% body mass), whereas the shank and foot relative masses were not significantly different. CONCLUSIONS: We revealed that the mechanical difficulty in swinging the lower limb is not relatively larger in sprinters in terms of inertia, even though the lower-limb mass is larger, reflecting their muscularity. We provide practical implications that sprinters can train without paying close attention to the increase in lower-limb mass and moment of inertia.


Assuntos
Extremidade Inferior , Sistema Musculoesquelético , Masculino , Humanos , Perna (Membro)/anatomia & histologia , Pé/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA