Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(4): e0044023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37409959

RESUMO

The in vitro growth transformation of primary B cells by Epstein-Barr virus (EBV) is the initial step in the development of posttransplant lymphoproliferative disorder (PTLD). We performed electron microscopic analysis and immunostaining of primary B cells infected with wild-type EBV. Interestingly, the nucleolar size was increased by two days after infection. A recent study found that nucleolar hypertrophy, which is caused by the induction of the IMPDH2 gene, is required for the efficient promotion of growth in cancers. In the present study, RNA-seq revealed that the IMPDH2 gene was significantly induced by EBV and that its level peaked at day 2. Even without EBV infection, the activation of primary B cells by the CD40 ligand and interleukin-4 increased IMPDH2 expression and nucleolar hypertrophy. Using EBNA2 or LMP1 knockout viruses, we found that EBNA2 and MYC, but not LMP1, induced the IMPDH2 gene during primary infections. IMPDH2 inhibition by mycophenolic acid (MPA) blocked the growth transformation of primary B cells by EBV, leading to smaller nucleoli, nuclei, and cells. Mycophenolate mofetil (MMF), which is a prodrug of MPA that is approved for use as an immunosuppressant, was tested in a mouse xenograft model. Oral MMF significantly improved the survival of mice and reduced splenomegaly. Taken together, these results indicate that EBV induces IMPDH2 expression through EBNA2-dependent and MYC-dependent mechanisms, leading to the hypertrophy of the nucleoli, nuclei, and cells as well as efficient cell proliferation. Our results provide basic evidence that IMPDH2 induction and nucleolar enlargement are crucial for B cell transformation by EBV. In addition, the use of MMF suppresses PTLD. IMPORTANCE EBV infections cause nucleolar enlargement via the induction of IMPDH2, which are essential for B cell growth transformation by EBV. Although the significance of IMPDH2 induction and nuclear hypertrophy in the tumorigenesis of glioblastoma has been reported, EBV infection brings about the change quickly by using its transcriptional cofactor, EBNA2, and MYC. Moreover, we present here, for the novel, basic evidence that an IMPDH2 inhibitor, namely, MPA or MMF, can be used for EBV-positive posttransplant lymphoproliferative disorder (PTLD).


Assuntos
Infecções por Vírus Epstein-Barr , Transtornos Linfoproliferativos , Humanos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Proteínas Virais/genética , Hipertrofia , IMP Desidrogenase
2.
J Infect Chemother ; 28(12): 1672-1676, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36064142

RESUMO

Mycoplasma hominis is a commensal pathogen normally found in urogenital tract of humans and has been associated with a wide variety of extra-genitourinary infections, such as mediastinitis, bacteremia, and septic arthritis, particularly in immunocompromised patients. Here, we present a case of a 48-year-old male, who had been treated with fingolimod for relapsing multiple sclerosis and presented with fever and right-sided hip pain following total hip arthroplasty. CT scan revealed localized fluid collection in the right quadriceps femoris muscle adjacent to the joint cavity of right hip. The percutaneously aspirated fluid grew M. hominis, which was also isolated from blood culture. With diagnosis of periprosthetic joint infection, the patient underwent surgical debridement with retained prosthesis and was treated with antimicrobial agents. Infected granulation tissues excised from the hip was observed under an electron microscope, which revealed electron-dense rounded structures contained in neutrophils, consistent with Mycoplasma particles. Fingolimod, an immunomodulatory drug that acts on the sphingosine-1-phosphate receptor and prevents the egress of lymphocytes from lymph nodes, might increase host susceptibility to a systemic M. hominis infection.


Assuntos
Anti-Infecciosos , Artrite Infecciosa , Esclerose Múltipla , Infecções por Mycoplasma , Infecções Relacionadas à Prótese , Sepse , Anti-Infecciosos/uso terapêutico , Artrite Infecciosa/diagnóstico , Cloridrato de Fingolimode/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/tratamento farmacológico , Infecções por Mycoplasma/tratamento farmacológico , Mycoplasma hominis , Infecções Relacionadas à Prótese/tratamento farmacológico , Receptores de Esfingosina-1-Fosfato
3.
Jpn J Infect Dis ; 75(5): 466-475, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-35491229

RESUMO

The emergence of unusual G9P[8]-E2 human rotaviruses in the Tokyo metropolitan area, Japan, in 2018 has been reported. During rotavirus strain surveillance in different regions of Japan (Mie, Okayama, and Chiba prefectures), G9P[8]-E2 strains were detected in children with diarrhea from all three prefectures. Here, we characterized the whole genome of seven representative G9P[8]-E2 strains. In the full-genome-based analysis, the seven study strains exhibited a unique genotype configuration with the NSP4 gene of genogroup 2 in a genogroup 1 genomic backbone: G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1. This genotype constellation was shared by the Tokyo G9P[8]-E2 strains. Phylogenetic analysis showed that all 11 genes, except NSP4, of the seven study strains appeared to have originated from co-circulating Wa-like G9P[8]-E1 strains. In contrast, NSP4 appeared to have originated from the co-circulating DS-1-like G2P[4]-E2 strains. Thus, G9P[8]-E2 strains appear to be derived through reassortment between G9P[8]-E1 and G2P[4]-E2 strains in Japan. Notably, the seven study G9P[8]-E2 strains and Tokyo G9P[8]-E2 strains were revealed to have 11-segment genomes almost indistinguishable from one another in their sequences (99.3-100%), indicating all these G9P[8]-E2 strains had a common origin. To our knowledge, this is the first description of the rapid spread of G9P[8]-E2 strains across a country.


Assuntos
Infecções por Rotavirus , Rotavirus , Criança , Genoma Viral , Genótipo , Humanos , Japão/epidemiologia , Filogenia , Rotavirus/genética , Infecções por Rotavirus/epidemiologia
4.
J Infect Chemother ; 27(9): 1350-1356, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34176716

RESUMO

INTRODUCTION: Several clinical studies have reported the efficacy of favipiravir in reducing viral load and shortening the duration of symptoms. However, the viability of SARS-CoV-2 in the context of favipiravir therapy and the potential for resistance development is unclear. METHODS: We sequenced SARS-CoV-2 in nasopharyngeal specimens collected from patients who participated in a randomized clinical trial of favipiravir at hospitals across Japan between March and May 2020. Paired genomes were sequenced from those who remained RT-PCR-positive 5-8 days into favipiravir therapy. Daily nasopharyngeal specimens from 69 patients who were RT-PCR-positive at randomization were examined for a cytopathic effect (CPE). RESULTS: Some strains early in the trial belonged to clade 19 B, whereas the majority belonged to clade 20 B. The median time from the disease onset to negative CPE was 9 days. CPE was strongly correlated with the time from disease onset, viral load, age, and male sex. Among 23 patients for whom paired genomes were available, all except one had identical genomes. Two mutations were observed in one patient who received favipiravir, neither in the RdRp gene. CONCLUSIONS: The SARS-CoV-2 genome distribution in this clinical trial conducted in Japan reflected the early influx of strains from China followed by replacement by strains from Europe. CPE was significantly associated with age, male sex, and viral loads but not with favipiravir therapy. There was no evidence of resistance development during favipiravir therapy.


Assuntos
COVID-19 , SARS-CoV-2 , Amidas , Antivirais/uso terapêutico , China , Europa (Continente) , Genômica , Humanos , Japão , Masculino , Pirazinas , Resultado do Tratamento
5.
Virus Genes ; 57(4): 338-357, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34106412

RESUMO

The exact evolutionary patterns of human G4P[6] rotavirus strains remain to be elucidated. Such strains possess unique and strain-specific genotype constellations, raising the question of whether G4P[6] strains are primarily transmitted via independent interspecies transmission or human-to-human transmission after interspecies transmission. Two G4P[6] rotavirus strains were identified in fecal specimens from hospitalized patients with severe diarrhea in Thailand, namely, DU2014-259 (RVA/Human-wt/THA/DU2014-259/2014/G4P[6]) and PK2015-1-0001 (RVA/Human-wt/THA/PK2015-1-0001/2015/G4P[6]). Here, we analyzed the full genomes of the two human G4P[6] strains, which provided the opportunity to study and confirm their evolutionary origin. On whole genome analysis, both strains exhibited a unique Wa-like genotype constellation of G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1. The NSP1 genotype A8 is commonly found in porcine rotavirus strains. Furthermore, on phylogenetic analysis, each of the 11 genes of strains DU2014-259 and PK2015-1-0001 appeared to be of porcine origin. On the other hand, the two study strains consistently formed distinct clusters for nine of the 11 gene segments (VP4, VP6, VP1-VP3, and NSP2-NSP5), strongly indicating the occurrence of independent porcine-to-human interspecies transmission events. Our observations provide important insights into the origin of zoonotic G4P[6] strains, and into the dynamic interaction between porcine and human rotavirus strains.


Assuntos
Diarreia/genética , Infecções por Rotavirus/genética , Rotavirus/genética , Doenças dos Suínos/genética , Animais , Diarreia/virologia , Genoma Viral/genética , Humanos , Filogenia , Rotavirus/patogenicidade , Infecções por Rotavirus/transmissão , Infecções por Rotavirus/virologia , Especificidade da Espécie , Suínos/genética , Suínos/virologia , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia
6.
mSphere ; 6(3)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011679

RESUMO

Information regarding the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in asymptomatic carriers is scarce. In order to determine the duration of infectivity and its correlation with reverse transcription-PCR (RT-PCR) results and time since initial positive PCR test in this population, we evaluated SARS-CoV-2 cell infectivity in nasopharyngeal samples longitudinally obtained from asymptomatic carriers who disembarked from a cruise ship during a COVID-19 outbreak. Of 166 nasopharyngeal samples collected from 39 asymptomatic carriers every 48 h until two consecutive negative PCR test results were obtained, SARS-CoV-2 was successfully isolated from 9 PCR-positive samples which were obtained from 7 persons (18%; 7/39). Viable viruses were isolated predominantly within 7 days after the initial positive PCR test, except for one person who shed viable virus until day 15. The median crossing point (Cp) value of RT-PCR of culture-positive samples was 24.6 (interquartile range [IQR], 20.4 to 25.8; range, 17.9 to 30.3), and Cp values were significantly associated with isolation of viable virus (odds ratio, 0.496; 95% confidence interval [CI], 0.329 to 0.747; P value, 0.001), which was consistent with existing data for symptomatic patients. Genome sequence analysis of SARS-CoV-2 samples consecutively obtained from a person who shed viable virus for 15 days identified the emergence of two novel single nucleotide variants (C8626T transition and C18452T transition) in the sample collected on day 15, with the latter corresponding to an amino acid substitution in nonstructural protein 14. The impact of these mutations on prolonged viable-virus shedding is unclear. These findings underscore the potential role of asymptomatic carriers in transmission.IMPORTANCE A growing number of studies suggest the potential role of asymptomatic SARS-CoV-2 carriers as a major driver of the COVID-19 pandemic; however, virological assessment of asymptomatic infection has largely been limited to reverse transcription-PCR (RT-PCR), which can be persistently positive without necessarily indicating the presence of viable virus (e.g., replication-competent virus). Here, we evaluated the infectivity of asymptomatic SARS-CoV-2 carriers by detecting SARS-CoV-2-induced cytopathic effects on Vero cells using longitudinally obtained nasopharyngeal samples from asymptomatic carriers. We show that asymptomatic carriers can shed viable virus until 7 days after the initial positive PCR test, with one outlier shedding until day 15. The crossing point (Cp) value of RT-PCR was the leading predictive factor for virus viability. These findings provide additional insights into the role of asymptomatic carriers as a source of transmission and highlight the importance of universal source control measures, along with isolation policy for asymptomatic carriers.


Assuntos
Infecções Assintomáticas/epidemiologia , COVID-19/transmissão , Eliminação de Partículas Virais/fisiologia , Adolescente , Adulto , Idoso , Animais , Teste de Ácido Nucleico para COVID-19/métodos , Linhagem Celular , Criança , Chlorocebus aethiops , Feminino , Genoma Viral/genética , Humanos , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , SARS-CoV-2/genética , Células Vero , Sequenciamento Completo do Genoma , Adulto Jovem
7.
Infect Genet Evol ; 87: 104656, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278636

RESUMO

Group A rotavirus is a leading cause of severe acute gastroenteritis worldwide. In this study, the first complete coding sequences of 11 RNA segments of human group A rotavirus G12P[8] in Japan were determined by an unbiased viral metagenomics. Its genomic constellation (VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5 genes) was identified as G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. When performing the genetic analysis, we discovered an intergenotypic recombination event in the pig group A rotavirus G12P[8] strain BUW-14-A008. The novel recombination was found between two different genotypes G12 and G3 in the VP7 gene, and P[8] and P[13] in the VP4 gene.


Assuntos
Gastroenterite/virologia , Variação Genética , Genômica , Recombinação Genética , Rotavirus/genética , Análise de Sequência de DNA , Genótipo , Humanos , Japão/epidemiologia , Infecções por Rotavirus/epidemiologia
8.
Infect Genet Evol ; 87: 104667, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33285275

RESUMO

An unusual rotavirus strain with the G3P[10] genotype (RVA/Human-wt/THA/MS2015-1-0001/2015/G3P[10]) was identified in a stool sample from a hospitalized child aged 11 months with severe gastroenteritis in Thailand. In the current study, we sequenced and characterized the full genome of strain MS2015-1-0001. On full-genomic analysis, strain MS2015-1-0001 exhibited the following genotype configuration: G3-P[10]-I8-R3-C3-M3-A9-N3-T3-E3-H6, which is identical or closely related to those of bat and bat-like rotavirus strains (MYAS33-like). Furthermore, phylogenetic analysis revealed that all 11 genes of strain MS2015-1-0001 appeared to be of bat origin. Our findings provide evidence for bat-to-human interspecies transmission of rotaviruses and important insights into dynamic interactions between human and bat rotavirus strains.


Assuntos
Quirópteros/virologia , Fezes/virologia , Gastroenterite/virologia , Infecções por Rotavirus/genética , Infecções por Rotavirus/transmissão , Rotavirus/genética , Rotavirus/isolamento & purificação , Zoonoses Virais , Animais , Genoma Viral , Humanos , Lactente , Masculino , Tailândia
9.
Virus Genes ; 56(5): 638-641, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32699936

RESUMO

Species A rotaviruses are a major cause of acute gastroenteritis in infants and young children worldwide. Reassortment is a common phenomenon due to the segmented nature of the rotavirus genome. The complete coding sequences of a species A rotavirus strain isolated from the feces of a child with acute gastroenteritis in Japan in 2018 were determined using an unbiased viral metagenomics approach. The genetic analysis revealed that the rotavirus strain had an unusual genomic constellation (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1), suggesting reassortment of a genotype 1 with a genotype 2 rotavirus, from which the NSP4-encoding gene was acquired.


Assuntos
Gastroenterite/virologia , Infecções por Rotavirus/virologia , Rotavirus , Toxinas Biológicas/genética , Proteínas não Estruturais Virais/genética , Doença Aguda , Pré-Escolar , Evolução Molecular , Fezes/virologia , Variação Genética , Genoma Viral/genética , Humanos , Japão , Filogenia , RNA Viral/genética , Vírus Reordenados/classificação , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Rotavirus/classificação , Rotavirus/genética , Rotavirus/isolamento & purificação
10.
Microbiol Immunol ; 64(8): 541-555, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32511783

RESUMO

Group A rotavirus (RVA) rarely causes severe complications such as encephalitis/encephalopathy. However, the pathophysiology of this specific complication remains unclear. Next-generation sequence analysis was used to compare the entire genome sequences of RVAs detected in patients with encephalitis/encephalopathy and gastroenteritis. This study enrolled eight patients with RVA encephalitis/encephalopathy and 10 with RVA gastroenteritis who were treated between February 2013 and July 2014. Viral RNAs were extracted from patients' stool, and whole-genome sequencing analysis was carried out to identify the specific gene mutations in RVA obtained from patients with severe neurological complications. Among the eight encephalitis/encephalopathy cases, six strains were DS-1-like G1P[8] and the remaining two were Wa-like G1P[8] (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1). Meanwhile, eight of the 10 viruses detected in rotavirus gastroenteritis patients were DS-1-like G1P[8], and the remaining two were Wa-like G1P[8]. These strains were further characterized by conducting phylogenetic analysis. No specific clustering was demonstrated in RVAs detected from encephalitis/encephalopathy patients. Although the DS-1-like G1P[8] strain was predominant in both groups, no specific molecular characteristics were detected in RVAs from patients with severe central nervous system complications.


Assuntos
Encefalite/virologia , Gastroenterite/virologia , Infecções por Rotavirus/virologia , Rotavirus/classificação , Criança , Pré-Escolar , Fezes/virologia , Feminino , Genoma Viral , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Tipagem Molecular , Filogenia , RNA Viral/genética , Rotavirus/isolamento & purificação
11.
PLoS One ; 15(4): e0231099, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32320419

RESUMO

The emergence and rapid spread of unusual DS-1-like intergenogroup reassortant rotaviruses having G1/3/8 genotypes have been recently reported from major parts of the world (Africa, Asia, Australia, Europe, and the Americas). During rotavirus surveillance in Thailand, three novel intergenogroup reassortant strains possessing the G9P[8] genotype (DBM2017-016, DBM2017-203, and DBM2018-291) were identified in three stool specimens from diarrheic children. In the present study, we determined and analyzed the full genomes of these three strains. On full-genomic analysis, all three strains were found to share a unique genotype constellation comprising both genogroup 1 and 2 genes: G9-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis demonstrated that each of the 11 genes of the three strains was closely related to that of emerging DS-1-like intergenogroup reassortant, human, and/or locally circulating human strains. Thus, the three strains were suggested to be multiple reassortants that had acquired the G9-VP7 genes from co-circulating Wa-like G9P[8] rotaviruses in the genetic background of DS-1-like intergenogroup reassortant (likely equine-like G3P[8]) strains. To our knowledge, this is the first description of emerging DS-1-like intergenogroup reassortant strains having the G9P[8] genotype. Our observations will add to the growing insights into the dynamic evolution of emerging DS-1-like intergenogroup reassortant rotaviruses through reassortment.


Assuntos
Genoma Viral/genética , Infecções por Rotavirus/genética , Rotavirus/genética , Sequenciamento Completo do Genoma , Diarreia/genética , Diarreia/virologia , Fezes/virologia , Genômica , Genótipo , Humanos , Anotação de Sequência Molecular , Filogenia , Rotavirus/patogenicidade , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Tailândia/epidemiologia
12.
J Med Virol ; 92(2): 174-186, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31498444

RESUMO

Group A rotavirus (RVA) is a major cause of acute gastroenteritis in infants and young children worldwide. This study aims to clarify the distribution of G/P types and genetic characteristics of RVAs circulating in Thailand. Between January 2014 and September 2016, 1867 stool specimens were collected from children and adults with acute gastroenteritis in six provinces in Thailand. RVAs were detected in 514/1867 (27.5%) stool specimens. G1P[8] (44.7%) was the most predominant genotype, followed by G3P[8] (33.7%), G2P[4] (11.5%), G8P[8] (7.0%), and G9P[8] (1.3%). Unusual G3P[9] (0.8%), G3P[10] (0.4%), G4P[6] (0.4%), and G10P[14] (0.2%) were also detected at low frequencies. The predominant genotype, G1P[8] (64.4%), in 2014 decreased to 6.1% in 2016. In contrast, the frequency of G3P[8] markedly increased from 5.5% in 2014 to 65.3% in 2015 and 89.8% in 2016. On polyacrylamide gel electrophoresis, most (135/140; 96.4%) of the G3P[8] strains exhibited a short RNA profile. Successful determination of the nucleotide sequences of the VP7 genes of 98 G3P[8] strains with a short RNA profile showed that they are all equine-like G3P[8] strains. On phylogenetic analysis of genome segments of two representative Thai equine-like G3P[8] strains, it was noteworthy that they possessed distinct NSP4 genes, one bovine-like and the other human-like. Thus, we found that characteristic equine-like G3P[8] strains with a short RNA electropherotype are becoming highly prevalent in children and adults in Thailand.


Assuntos
Gastroenterite/virologia , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Rotavirus/classificação , Rotavirus/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Equidae , Fezes/virologia , Gastroenterite/epidemiologia , Genoma Viral , Genótipo , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Tipagem Molecular , Filogenia , Prevalência , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Tailândia/epidemiologia , Adulto Jovem
13.
Int J Endocrinol ; 2019: 4194853, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772574

RESUMO

Osteoporosis patients with chronic kidney disease (CKD) are becoming common in our superaging society. Renal dysfunction causes phosphorus accumulation in the circulating plasma and leads to the development of CKD-mineral bone disorder (MBD). We have previously reported that type III Pi transporter-overexpressing transgenic (Pit-1 TG) rats manifest phosphate (Pi)-dependent podocyte injury. In the present study, we explored the effect of risedronate on Pi-induced podocyte injury in vivo. Pit-1 TG rats and wild-type rats at 5 weeks old were divided into a risedronate-treated group and an untreated group. We subcutaneously administered 5 µg/kg body weight of risedronate or saline twice a week during the experimental period. Risedronate did not alter serum creatinine levels at 5, 8, and 12 weeks of age. However, electron microscopy images showed that thickening of the glomerular basement membrane was improved in the risedronate treatment group. Furthermore, immunostaining for podocyte injury markers revealed that both desmin- and connexin43-positive areas were smaller in the risedronate-treated group than in the untreated group, suggesting that bisphosphonates could rescue Pi-induced podocyte injury. In conclusion, our findings suggest that risedronate could maintain glomerular barrier function by rescuing Pi-induced podocyte injury.

14.
Jpn J Infect Dis ; 72(4): 256-260, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30814461

RESUMO

The emergence of unusual DS-1-like intergenogroup reassortant rotaviruses with a bovine-like G8 genotype (DS-1-like G8P[8] strains) has been reported in several Asian countries. During the rotavirus surveillance program in Japan in 2017, a DS-1-like G8P[8] strain (RVA/Human-wt/JPN/SO1162/2017/G8P[8]) was identified in 43 rotavirus-positive stool samples. Strain SO1162 was shown to have a unique genotype constellation, including genes from both genogroup 1 and 2: G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that the VP1 gene of strain SO1162 appeared to have originated from DS-1-like G1P[8] strains from Thailand and Vietnam, while the remaining 10 genes were closely related to those of previously reported DS-1-like G8P[8] strains. Thus, SO1162 was suggested to be a reassortant strain that acquired the VP1 gene from Southeast Asian DS-1-like G1P[8] strains on the genetic background of co-circulating DS-1-like G8P[8] strains. Our findings provide important insights into the evolutionary dynamics of emerging DS-1-like G8P[8] strains.


Assuntos
Vírus Reordenados/genética , Infecções por Rotavirus/virologia , Rotavirus/genética , Animais , Bovinos , Pré-Escolar , Evolução Molecular , Fezes/virologia , Genes Virais/genética , Genoma Viral/genética , Genótipo , Humanos , Japão , Filogenia , RNA Viral/genética , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Rotavirus/classificação , Rotavirus/isolamento & purificação , Análise de Sequência de DNA
15.
Infect Genet Evol ; 68: 231-248, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30543939

RESUMO

A monovalent rotavirus vaccine (RV1) was introduced to the national immunization program in Kenya in July 2014. There was increased detection of uncommon G3P[6] strains that coincided temporally with the timing of this vaccine introduction. Here, we sequenced and characterized the full genomes of two post-vaccine G3P[6] strains, RVA/Human-wt/KEN/KDH1951/2014/G3P[6] and RVA/Human-wt/KEN/KDH1968/2014/G3P[6], as representatives of these uncommon strains. On full-genomic analysis, both strains exhibited a DS-1-like genotype constellation: G3-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that all 11 genes of strains KDH1951 and KDH1968 were very closely related to those of human G3P[6] strains isolated in Uganda in 2012-2013, indicating the derivation of these G3P[6] strains from a common ancestor. Because the uncommon G3P[6] strains that emerged in Kenya are fully heterotypic as to the introduced vaccine strain regarding the genotype constellation, vaccine effectiveness against these G3P[6] strains needs to be closely monitored.


Assuntos
Genoma Viral , Genômica , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Rotavirus/classificação , Rotavirus/genética , Genes Virais , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Quênia/epidemiologia , Filogenia , Rotavirus/imunologia , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/imunologia , Análise de Sequência de DNA , Vacinação
16.
Nat Commun ; 9(1): 3936, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258067

RESUMO

Exosomes, a type of small extracellular vesicles (sEVs), derived from multivesicular bodies (MVBs), mediate cell-to-cell communication by transporting proteins, mRNAs, and miRNAs. However, the molecular mechanism by which proteins are sorted to sEVs is not fully understood. Here, we report that ubiquitin-like 3 (UBL3)/membrane-anchored Ub-fold protein (MUB) acts as a posttranslational modification (PTM) factor that regulates protein sorting to sEVs. We find that UBL3 modification is indispensable for sorting of UBL3 to MVBs and sEVs. We also observe a 60% reduction of total protein levels in sEVs purified from Ubl3-knockout mice compared with those from wild-type mice. By performing proteomics analysis, we find 1241 UBL3-interacting proteins, including Ras. We also show that UBL3 directly modifies Ras and oncogenic RasG12V mutant, and that UBL3 expression enhances sorting of RasG12V to sEVs via UBL3 modification. Collectively, these results indicate that PTM by UBL3 influences the sorting of proteins to sEVs.


Assuntos
Vesículas Extracelulares/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitinas/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , Camundongos Knockout , Transporte Proteico , Ubiquitinas/genética
17.
Infect Genet Evol ; 63: 43-57, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29772399

RESUMO

An unusual rotavirus strain, DB2015-066 with the G10P[14] genotype (RVA/Human-wt/THA/DB2015-066/2015/G10P[14]), was detected in a stool sample from a child hospitalized with acute gastroenteritis in Thailand. Here, we sequenced and characterized the full-genome of the strain DB2015-066. On whole genomic analysis, strain DB2015-066 was shown to have a unique genotype constellation: G10-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The backbone genes of this strain (I2-R2-C2-M2-A3-N2-T6-E2-H3) are commonly found in rotavirus strains from artiodactyls such as cattle. Furthermore, phylogenetic analysis indicated that each of the 11 genes of strain DB2015-066 could be of artiodactyl (likely bovine) origin. Thus, strain DB2015-066 appeared to be derived from through zoonotic transmission of a bovine rotavirus strain. Of note, the VP7 gene of strain DB2015-066 was located in G10 lineage-6 together with ones of bovine and bovine-like rotavirus strains, away from the clusters comprising other G10P[14] strains in G10 lineage-2/4/5/9, suggesting the occurrence of independent bovine-to-human interspecies transmission events. Our observations provide important insights into the origins of rare G10P[14] strains, and into dynamic interactions between artiodactyl and human rotavirus strains.


Assuntos
Bovinos/virologia , Diarreia/virologia , Fezes/virologia , Infecções por Rotavirus/virologia , Rotavirus/genética , Animais , Humanos , Lactente , Filogenia , Infecções por Rotavirus/epidemiologia , Tailândia/epidemiologia
18.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669834

RESUMO

An entirely plasmid-based reverse genetics system for rotaviruses was established very recently. We improved the reverse genetics system to generate recombinant rotavirus by transfecting only 11 cDNA plasmids for its 11 gene segments under the condition of increasing the ratio of the cDNA plasmids for NSP2 and NSP5 genes. Utilizing this highly efficient system, we then engineered infectious recombinant rotaviruses expressing bioluminescent (NanoLuc luciferase) and fluorescent (enhanced green fluorescent protein [EGFP] and mCherry) reporters. These recombinant rotaviruses expressing reporters remained genetically stable during serial passages. Our reverse genetics approach and recombinant rotaviruses carrying reporter genes will be great additions to the tool kit for studying the molecular virology of rotavirus and for developing future next-generation vaccines and expression vectors.IMPORTANCE Rotavirus is one of the most important pathogens causing severe gastroenteritis in young children worldwide. In this paper, we describe a robust and simple reverse genetics system based on only rotavirus cDNAs and its application for engineering infectious recombinant rotaviruses harboring bioluminescent (NanoLuc) and fluorescent (EGFP and mCherry) protein genes. This highly efficient reverse genetics system and recombinant group A rotaviruses expressing reporters could be powerful tools for the study of different aspects of rotavirus replication. Furthermore, they may be useful for next-generation vaccine production for this medically important virus.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Rim/virologia , Genética Reversa , Infecções por Rotavirus/virologia , Rotavirus/fisiologia , Proteínas Virais/metabolismo , Animais , Células Cultivadas , Cricetinae , Proteínas de Fluorescência Verde/genética , Haplorrinos , Rim/metabolismo , Plasmídeos , RNA Viral , Infecções por Rotavirus/metabolismo , Replicação Viral
19.
J Med Virol ; 90(5): 890-898, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29315643

RESUMO

The emergence and rapid spread of novel DS-1-like intergenogroup reassortant rotaviruses having the equine-like G3 genotype (DS-1-like G3P[8] strains) have been recently reported from several countries. During rotavirus surveillance in Japan in 2015-2016, three DS-1-like G3P[8] strains were identified from children with severe diarrhea. In the present study, we sequenced and characterized the full genomes of these three strains. On full-genomic analysis, all three strains showed a unique genotype constellation including both genogroup 1 and 2 genes: G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that each of the 11 genes of the three strains was closely related to that of Japanese DS-1-like G1P[8] and/or Japanese equine-like G3P[4] human strains. Thus, the three study strains were suggested to be reassortants that acquired the G3-VP7 gene from equine G3 rotaviruses on the genetic background of DS-1-like G1P[8] strains. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G3P[8] strains.


Assuntos
Diarreia/virologia , Genótipo , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Infecções por Rotavirus/virologia , Rotavirus/classificação , Rotavirus/isolamento & purificação , Pré-Escolar , Feminino , Humanos , Lactente , Japão , Masculino , Filogenia , Vírus Reordenados/genética , Rotavirus/genética , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
20.
J Gen Virol ; 98(4): 532-538, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28382902

RESUMO

An unusual rotavirus strain with the G9P[23] genotype (RVA/Human-wt/THA/KKL-117/2014/G9P[23]) was identified in a stool specimen from a 10-month-old child hospitalized with severe diarrhoea. In this study, we sequenced and characterized the complete genome of strain KKL-117. On full-genomic analysis, strain KKL-117 was found to have the following genotype constellation: G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1. The non-G/P genotype constellation of this strain (I5-R1-C1-M1-A8-N1-T1-E1-H1) is commonly shared with rotavirus strains from pigs. Furthermore, phylogenetic analysis indicated that each of the 11 genes of strain KKL-117 appeared to be of porcine origin. Our observations provide important insights into the dynamic interactions between human and porcine rotavirus strains.


Assuntos
Diarreia/virologia , Genótipo , Infecções por Rotavirus/virologia , Rotavirus/classificação , Rotavirus/genética , Animais , Análise por Conglomerados , Fezes/virologia , Genoma Viral , Humanos , Lactente , Filogenia , Rotavirus/isolamento & purificação , Infecções por Rotavirus/transmissão , Análise de Sequência de DNA , Homologia de Sequência , Suínos , Tailândia , Zoonoses/transmissão , Zoonoses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA