Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Cancer Manag Res ; 16: 1053-1061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39183757

RESUMO

Purpose: This study aimed to investigate the clinicopathological characteristics of oral squamous cell carcinoma (OSCC) patients and analyze the relationship between the degree of differentiation and factors including age, sex, stage, and tumor location in West Java, Indonesia. Patients and Methods: A retrospective cross-sectional study was conducted at the Central Referral and Teaching Hospital in West Java, Indonesia. The data were collected by reviewing medical records with International Classification of Diseases (ICD) codes C00-C06 from 2016 to 2023. Descriptive statistics were employed to summarize the clinicopathological characteristics of OSCC patients. Chi-square, rank Spearman tests, and contingency correlation coefficients were used to analyze the relationship between the degree of differentiation and various factors, such as age, sex, stage, and tumor location of OSCC. Results: Out of the 627 oral cancer patients, 70.49% were diagnosed with OSCC with a gender distribution of 45.7% males and 54.3% females, predominantly within the age range of 30-49 (37.2%). Most OSCC cases were stage IV (37.7%), with the tongue identified as the most common site (68.8%). A consistent trend of higher well-differentiated and moderately differentiated OSCC by age and gender was observed. Statistical analysis revealed no significant correlation between age, gender, tumor location, and the degree of OSCC differentiation (p>0.05). However, a statistically significant correlation was identified between the degree of OSCC differentiation and stage (p<0.001, r=0.460). Conclusion: There is a correlation between the degree of differentiation of OSCC and stage, suggesting significant prognostic implications that can aid in treatment planning and outcome prediction. However, further studies are needed due to the lack of comprehensive data on risk factors and survival rates of oral cancer patients, which is essential for enhancing prevention and treatment strategies for OSCC.

2.
Int J Nanomedicine ; 19: 6931-6943, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005960

RESUMO

Purpose: Over the past three years, extensive research has been dedicated to understanding and combating COVID-19. Targeting the interaction between the SARS-CoV-2 Spike protein and the ACE2 receptor has emerged as a promising therapeutic strategy against SARS-CoV-2. This study aimed to develop ACE2-coated virus-like particles (ACE2-VLPs), which can be utilized to prevent viral entry into host cells and efficiently neutralize the virus. Methods: Virus-like particles were generated through the utilization of a packaging plasmid in conjunction with a plasmid containing the ACE2 envelope sequence. Subsequently, ACE2-VLPs and ACE2-EVs were purified via ultracentrifugation. The quantification of VLPs was validated through multiple methods, including Nanosight 3000, TEM imaging, and Western blot analysis. Various packaging systems were explored to optimize the ACE2-VLP configuration for enhanced neutralization capabilities. The evaluation of neutralization effectiveness was conducted using pseudoviruses bearing different spike protein variants. Furthermore, the study assessed the neutralization potential against the Omicron BA.1 variant in Vero E6 cells. Results: ACE2-VLPs showed a high neutralization capacity even at low doses and demonstrated superior efficacy in in vitro pseudoviral assays compared to extracellular vesicles carrying ACE2. ACE2-VLPs remained stable under various environmental temperatures and effectively blocked all tested variants of concern in vitro. Notably, they exhibited significant neutralization against Omicron BA.1 variant in Vero E6 cells. Given their superior efficacy compared to extracellular vesicles and proven success against live virus, ACE2-VLPs stand out as crucial candidates for treating SARS-CoV-2 infections. Conclusion: This novel therapeutic approach of coating VLPs with receptor particles provides a proof-of-concept for designing effective neutralization strategies for other viral diseases in the future.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Células Vero , Chlorocebus aethiops , Humanos , COVID-19/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Anticorpos Neutralizantes/farmacologia , Células HEK293 , Internalização do Vírus/efeitos dos fármacos
3.
Expert Rev Anti Infect Ther ; : 1-11, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38973346

RESUMO

INTRODUCTION: Respiratory syncytial virus (RSV) causes bronchiolitis and other respiratory issues in immunocompromised individuals, the elderly, and children. After six decades of research, we have only recently seen the approval of two RSV vaccines, Arexvy and Abrysvo. Direct-acting antivirals against RSV have been more difficult to develop with ribavirin and palivizumab giving very modest reductions in hospitalizations and no differences in mortality. Recently, nirsevimab was licensed and has proven to be much more effective when given prophylactically. These are delivered intravenously (IV) and intramuscularly (IM), but an intranasal (IN) antiviral has several advantages in terms of ease of use, lower resource need, and acting at the site of infection. AREAS COVERED: In this paper, we review the available literature on the current pre-clinical research landscape of anti-RSV therapeutics tested for IN delivery. EXPERT OPINION: As RSV is a respiratory virus that infects both the upper and lower respiratory tracts, efforts are focused on developing a therapeutic that can be delivered via the nasal route. The rationale is to directly target the replicating virus with an obvious respiratory tract tropism. This approach will not only pave the way for a nasal delivery approach aimed at reducing respiratory viral illness but also controlling aerosol virus transmission.

4.
Virulence ; 15(1): 2383559, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39066684

RESUMO

A variety of animals can be infected by encephalomyocarditis virus (EMCV). EMCV is the established causative agent of myocarditis and encephalitis in some animals. EMCV causes high fatality in suckling and weaning piglets, making pigs the most susceptible domestic animal species. Importantly, EMCV has zoonotic potential to infect the human population. The ability of the pathogen to avoid and undermine the initial defence mechanism of the host contributes to its virulence and pathogenicity. A large body of literature highlights the intricate strategies employed by EMCV to escape the innate immune machinery to suit its "pathogenic needs." Here, we also provide examples on how EMCV interacts with certain host proteins to dampen the infection process. Hence, this concise review aims to summarize these findings in a compendium of decades of research on this exciting yet underappreciated topic.


Assuntos
Infecções por Cardiovirus , Vírus da Encefalomiocardite , Interações Hospedeiro-Patógeno , Imunidade Inata , Vírus da Encefalomiocardite/patogenicidade , Vírus da Encefalomiocardite/imunologia , Vírus da Encefalomiocardite/fisiologia , Animais , Infecções por Cardiovirus/virologia , Infecções por Cardiovirus/imunologia , Infecções por Cardiovirus/veterinária , Suínos , Humanos , Interações Hospedeiro-Patógeno/imunologia , Miocardite/virologia , Miocardite/imunologia , Virulência , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia
5.
Virol Sin ; 39(4): 587-599, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823782

RESUMO

Herpesviruses antagonize host antiviral responses through a myriad of molecular strategies culminating in the death of the host cells. Pseudorabies virus (PRV) is a significant veterinary pathogen in pigs, causing neurological sequalae that ultimately lead to the animal's demise. PRV is known to trigger apoptotic cell death during the late stages of infection. The virion host shutdown protein (VHS) encoded by UL41 plays a crucial role in the PRV infection process. In this study, we demonstrate that UL41 inhibits PRV-induced activation of inflammatory cytokine and negatively regulates the cGAS-STING-mediated antiviral activity by targeting IRF3, thereby inhibiting the translocation and phosphorylation of IRF3. Notably, mutating the conserved amino acid sites (E192, D194, and D195) in the RNase domain of UL41 or knocking down UL41 inhibits the immune evasion of PRV, suggesting that UL41 may play a crucial role in PRV's evasion of the host immune response during infection. These results enhance our understanding of how PRV structural proteins assist the virus in evading the host immune response.


Assuntos
Herpesvirus Suídeo 1 , Evasão da Resposta Imune , Fator Regulador 3 de Interferon , NF-kappa B , Herpesvirus Suídeo 1/imunologia , Herpesvirus Suídeo 1/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Animais , Suínos , NF-kappa B/metabolismo , NF-kappa B/genética , NF-kappa B/imunologia , Humanos , Interferons/imunologia , Interferons/metabolismo , Interferons/genética , Pseudorraiva/virologia , Pseudorraiva/imunologia , Linhagem Celular , Interações Hospedeiro-Patógeno/imunologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/imunologia , Células HEK293 , Fosforilação , Transporte Proteico
6.
mSphere ; 9(6): e0023624, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38757961

RESUMO

Mammalian orthoreovirus (MRV) outer capsid protein σ3 is a multifunctional protein containing a double-stranded RNA-binding domain, which facilitates viral entry and assembly. We reasoned that σ3 has an innate immune evasion function. Here, we show that σ3 protein localizes in the mitochondria and interacts with mitochondrial antiviral signaling protein (MAVS) to activate the intrinsic mitochondria-mediated apoptotic pathway. Consequently, σ3 protein promotes the degradation of MAVS through the intrinsic caspase-9/caspase-3 apoptotic pathway. Moreover, σ3 protein can also inhibit the expression of the components of the RNA-sensing retinoic acid-inducible gene (RIG)-like receptor (RLR) signaling pathway to block antiviral type I interferon responses. Mechanistically, σ3 inhibits RIG-I and melanoma differentiation-associated gene 5 expression is independent of its inhibitory effect on MAVS. Overall, we demonstrate that the MRV σ3 protein plays a vital role in negatively regulating the RLR signaling pathway to inhibit antiviral responses. This enables MRV to evade host defenses to facilitate its own replication providing a target for the development of effective antiviral drugs against MRV. IMPORTANCE: Mammalian orthoreovirus (MRV) is an important zoonotic pathogen, but the regulatory role of its viral proteins in retinoic acid-inducible gene-like receptor (RLR)-mediated antiviral responses is still poorly understood. Herein, we show that MRV σ3 protein co-localizes with mitochondrial antiviral signaling protein (MAVS) in the mitochondria and promotes the mitochondria-mediated intrinsic apoptotic pathway to cleave and consequently degrade MAVS. Furthermore, tryptophan at position 133 of σ3 protein plays a key role in the degradation of MAVS. Importantly, we show that MRV outer capsid protein σ3 is a key factor in antagonizing RLR-mediated antiviral responses, providing evidence to better unravel the infection and transmission mechanisms of MRV.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas do Capsídeo , Orthoreovirus de Mamíferos , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Humanos , Orthoreovirus de Mamíferos/genética , Animais , Apoptose , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Mitocôndrias/metabolismo , Imunidade Inata , Camundongos , Evasão da Resposta Imune , Células HEK293 , Receptores Imunológicos/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Linhagem Celular , Interações Hospedeiro-Patógeno
7.
Mol Immunol ; 170: 131-143, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663254

RESUMO

Mammalian reovirus (MRV) is a non-enveloped, gene segmented double-stranded RNA (dsRNA) virus. It is an important zoonotic pathogen that infects many mammals and vertebrates that act as natural hosts and causes respiratory and digestive tract diseases. Studies have reported that RIG-I and MDA5 in the innate immune cytoplasmic RNA-sensing RIG-like receptor (RLR) signaling pathway can recognize dsRNA from MRV and promote antiviral type I interferon (IFN) responses. However, the mechanism by which many MRV-encoded proteins evade the host innate immune response remains unclear. Here, we show that exogenous µ1 protein promoted the proliferation of MRV in vitro, while knockdown of MRV µ1 protein expression by shRNA could impair MRV proliferation. Specifically, µ1 protein inhibited MRV or poly(I:C)-induced IFN-ß expression, and attenuated RIG-I/MDA5-mediated signaling axis transduction during MRV infection. Importantly, we found that µ1 protein significantly decreased IFN-ß mRNA expression induced by MDA5, RIG-I, MAVS, TBK1, IRF3(5D), and degraded the protein expression of exogenous MDA5, RIG-I, MAVS, TBK1 and IRF3 via the proteasomal and lysosomal pathways. Additionally, we show that µ1 protein can physically interact with MDA5, RIG-I, MAVS, TBK1, and IRF3 and attenuate the RIG-I/MDA5-mediated signaling cascades by blocking the phosphorylation and nuclear translocation of IRF3. In conclusion, our findings reveal that MRV outer capsid protein µ1 is a key factor in antagonizing RLRs signaling cascades and provide new strategies for effective prevention and treatment of MRV infection.


Assuntos
Proteínas do Capsídeo , Proteína DEAD-box 58 , Fator Regulador 3 de Interferon , Helicase IFIH1 Induzida por Interferon , Orthoreovirus de Mamíferos , Receptores Imunológicos , Transdução de Sinais , Animais , Humanos , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Proteína DEAD-box 58/metabolismo , Células HEK293 , Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Interferon beta/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Orthoreovirus de Mamíferos/imunologia , Orthoreovirus de Mamíferos/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases , Infecções por Reoviridae/imunologia , Transdução de Sinais/imunologia , Proteínas Virais/metabolismo , Proteínas do Capsídeo/metabolismo
8.
Nucleic Acid Ther ; 34(3): 101-108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38530082

RESUMO

Long antisense RNAs (asRNAs) have been observed to repress HIV and other virus expression in a manner that is refractory to viral evolution. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) disease, has a distinct ability to evolve resistance around antibody targeting, as was evident from the emergence of various SARS-CoV-2 spike antibody variants. Importantly, the effectiveness of current antivirals is waning due to the rapid emergence of new variants of concern, more recently the omicron variant. One means of avoiding the emergence of viral resistance is by using long asRNA to target SARS-CoV-2. Similar work has proven successful with HIV targeting by long asRNA. In this study, we describe a long asRNA targeting SARS-CoV-2 RNA-dependent RNA polymerase gene and the ability to deliver this RNA in extracellular vesicles (EVs) to repress virus expression. The observations presented in this study suggest that EV-delivered asRNAs are one means to targeting SARS-CoV-2 infection, which is both effective and broadly applicable as a means to control viral expression in the absence of mutation. This is the first demonstration of the use of engineered EVs to deliver long asRNA payloads for antiviral therapy.


Assuntos
COVID-19 , Vesículas Extracelulares , RNA Antissenso , SARS-CoV-2 , Vesículas Extracelulares/genética , Vesículas Extracelulares/virologia , Vesículas Extracelulares/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Humanos , RNA Antissenso/genética , RNA Antissenso/uso terapêutico , COVID-19/virologia , COVID-19/genética , COVID-19/terapia , Animais , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Células Vero , Chlorocebus aethiops , Antivirais/uso terapêutico , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19
9.
Antiviral Res ; 222: 105815, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38246206

RESUMO

There remains a striking overall mortality burden of COVID-19 worldwide. Given the waning effectiveness of current SARS-CoV-2 antivirals due to the rapid emergence of new variants of concern (VOC), we employed a direct-acting molecular therapy approach using gene silencing RNA interference (RNAi) technology. In this study, we developed and screened several ultra-conserved small-interfering RNAs (siRNAs) before selecting one potent siRNA candidate for pre-clinical in vivo testing. This non-immunostimulatory, anti-SARS-CoV-2 siRNA candidate maintains its antiviral activity against all tested SARS-CoV-2 VOC and works effectively as a single agent. For the first time, significant antiviral effects in both the lungs and nasal cavities of SARS-CoV-2 infected mice were observed when this siRNA candidate was delivered intranasally (IN) as a prophylactic agent with the aid of lipid nanoparticles (LNPs). Importantly, a pre-exposure prophylactic IN-delivered anti-SARS-CoV-2 siRNA antiviral that can ameliorate viral replication in the nasal cavity could potentially prevent aerosol spread of respiratory viruses. An IN delivery approach would allow for the development of a direct-acting nasal spray approach that could be self-administered prophylactically.


Assuntos
COVID-19 , Animais , Camundongos , RNA Interferente Pequeno/genética , COVID-19/prevenção & controle , Cavidade Nasal , SARS-CoV-2/genética , Antivirais/uso terapêutico , Pulmão
10.
Biomed Pharmacother ; 165: 115091, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421784

RESUMO

Metastasis accounts for the majority of cancer-associated mortalities, representing a huge health and economic burden. One of the mechanisms that enables metastasis is hypersialylation, characterized by an overabundance of sialylated glycans on the tumor surface, which leads to repulsion and detachment of cells from the original tumor. Once the tumor cells are mobilized, sialylated glycans hijack the natural killer T-cells through self-molecular mimicry and activatea downstream cascade of molecular events that result in inhibition of cytotoxicity and inflammatory responses against cancer cells, ultimately leading to immune evasion. Sialylation is mediated by a family of enzymes known as sialyltransferases (STs), which catalyse the transfer of sialic acid residue from the donor, CMP-sialic acid, onto the terminal end of an acceptor such as N-acetylgalactosamine on the cell-surface. Upregulation of STs increases tumor hypersialylation by up to 60% which is considered a distinctive hallmark of several types of cancers such as pancreatic, breast, and ovarian cancer. Therefore, inhibiting STs has emerged as a potential strategy to prevent metastasis. In this comprehensive review, we discuss the recent advances in designing novel sialyltransferase inhibitors using ligand-based drug design and high-throughput screening of natural and synthetic entities, emphasizing the most successful approaches. We analyse the limitations and challenges of designing selective, potent, and cell-permeable ST inhibitors that hindered further development of ST inhibitors into clinical trials. We conclude by analysing emerging opportunities, including advanced delivery methods which further increase the potential of these inhibitors to enrich the clinics with novel therapeutics to combat metastasis.


Assuntos
Ácido N-Acetilneuramínico , Neoplasias , Humanos , Ácido N-Acetilneuramínico/uso terapêutico , Neoplasias/tratamento farmacológico , Ácido N-Acetilneuramínico do Monofosfato de Citidina , Polissacarídeos/uso terapêutico , Sialiltransferases
11.
Mol Oral Microbiol ; 38(4): 259-274, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37014754

RESUMO

Squamous cell carcinoma of the oral cavity (OSCC) is the most common head-and-neck malignancy. Importantly, we are experiencing an alarming rise in the incidence of oropharyngeal squamous cell carcinoma (OPSCC) globally. Oncogenic viruses, human papillomavirus (HPV) and Epstein-Barr virus (EBV), are known to be co-associated with OSCC and OPSCC cases. However, the reported incidence of HPV and EBV co-infection in OSCCs and OPSCCs globally is unknown. To address this, we performed a formal meta-analysis and systematic review on published studies that report the detection of both EBV and HPV in OSCCs and OPSCCs. Our analysis revealed 18 relevant studies out of a total of 1820 cases (1181 from the oral cavity and 639 from the oropharynx). Overall, HPV and EBV co-infection was found in 11.9% of OSCC and OPSCC cases combined (95% CI: 8%-14.1%). Based on anatomical subsite, dual positivity estimates were 10.5% (95% CI: 6.7%-15.1%) for OSCC and 14.2% (95% CI: 9.1%-21.3%) for OPSCC. The highest dual positivity rates described were in European countries: for OSCC 34.7% (95% CI: 25.9%-44.6%) in Sweden and for OPSCC, 23.4% (95% CI: 16.9%-31.5%) in Poland. Given these substantive prevalence rates, the value of detecting dual infection in the diagnosis and prognosis of these cancers deserves careful longitudinal studies, as do implications for cancer prevention and therapy. We further proposed molecular mechanisms that could explain how HPV and EBV could co-contribute to the aetiology of OSCCs and OPSCCs.


Assuntos
Coinfecção , Infecções por Vírus Epstein-Barr , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/epidemiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/complicações , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/diagnóstico , Infecções por Vírus Epstein-Barr/epidemiologia , Herpesvirus Humano 4 , Papillomavirus Humano , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/complicações , Coinfecção/epidemiologia , Coinfecção/complicações , Neoplasias de Cabeça e Pescoço/complicações
12.
J Microbiol Immunol Infect ; 56(3): 516-525, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36934064

RESUMO

RNA interference (RNAi) is an emerging and promising therapy for a wide range of respiratory viral infections. This highly specific suppression can be achieved by the introduction of short-interfering RNA (siRNA) into mammalian systems, resulting in the effective reduction of viral load. Unfortunately, this has been hindered by the lack of a good delivery system, especially via the intranasal (IN) route. Here, we have developed an IN siRNA encapsulated lipid nanoparticle (LNP) in vivo delivery system that is highly efficient at targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory syncytial virus (RSV) lung infection in vivo. Importantly, IN siRNA delivery without the aid of LNPs abolishes anti-SARS-CoV-2 activity in vivo. Our approach using LNPs as the delivery vehicle overcomes the significant barriers seen with IN delivery of siRNA therapeutics and is a significant advancement in our ability to delivery siRNAs. The study presented here demonstrates an attractive alternate delivery strategy for the prophylactic treatment of both future and emerging respiratory viral diseases.


Assuntos
COVID-19 , Nanopartículas , Infecções por Vírus Respiratório Sincicial , Vírus , Animais , Humanos , RNA Interferente Pequeno/genética , SARS-CoV-2/genética , Administração Intranasal , COVID-19/prevenção & controle , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus/genética , Pulmão , Mamíferos/genética
13.
J Med Virol ; 95(1): e28260, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305515

RESUMO

Several viruses are known to be associated with the development of certain cancers, including human papilloma virus (HPV), an established causative agent for a range of anogenital and head and neck cancers. However, the causality has been based on the presence of the virus, or its genetic material, in the sampled tumors. We have long wondered if viruses cause cancer via a "hit and run" mechanism such that they are no longer present in the resulting tumors. Here, we hypothesize that the absence of viral genes from the tumor does not necessarily exclude the viral aetiology. To test this, we used an HPV-driven oropharyngeal cancer (OPC) tumor model and CRISPR to delete the viral oncogene, E7. Indeed, the genetic removal of HPV E7 oncogene eliminates tumors in vivo. Remarkably, E7 deleted tumors recurred over time and develop new mutations not previously seen in HPV+ OPC tumors. Importantly, a number of these new mutations are found to be already present in HPV- OPC tumors.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas Oncogênicas Virais , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Papillomavirus Humano , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/patologia , Proteínas Repressoras/genética , Recidiva Local de Neoplasia , Neoplasias Orofaríngeas/complicações , Neoplasias Orofaríngeas/patologia , Proteínas E7 de Papillomavirus/genética
14.
Virus Genes ; 59(2): 312-316, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36474086

RESUMO

Clinical and pre-clinical work for a number of cancer types has demonstrated relatively positive outcomes and effective tumour regression when the level and function of p53, a well-established tumour suppressor, is restored. Human papillomavirus (HPV)-driven cancers encode the E6 oncoprotein, which leads to p53 degradation, to allow the carcinogenic process to proceed. Indeed, there have been several attempts to revive p53 function in HPV-driven cancers by both pharmacological and genetic means to increase p53 bioavailability. Here, we employed a CRISPR activation (CRISPRa) approach to overcome HPV-mediated silencing of p53 by hyperexpressing the p53 gene promoter. Our data show that CRISPRa-mediated hyperexpression of p53 leads to HPV+ cervical cancer cell killing and the reduction of cell proliferation. This proof-of-concept data suggest that increasing p53 bioavailability may potentially be a promising therapeutic approach for the treatment of HPV-driven cancers.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo
15.
Biomed Pharmacother ; 155: 113782, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271562

RESUMO

The major HPV oncogenes, E6 and E7, are known for its notoriety in driving the carcinogenic process in human papilloma virus (HPV) driven cancers. It is well-established that the removal of E7 dampens HPV cancer cell growth and proliferation. This has made E7 an attractive target for HPV cancers. Seminal work from our laboratory employed a CRISPR editing approach to delete E7 which resulted in the effective elimination of HPV+ cervical cancer tumours in vivo. We have also successfully delayed HPV+ tumour growth in vivo with aurora kinase (AURK) inhibitors, an effect which is strongly sensitized by the presence of E7. Unlike our previous observations in cervical cancer cells, in vitro targeting of E6/E7 have only resulted in partial killing of HPV+ oral squamous carcinoma (OSC) cells. However, the effect of sustained removal of E7 on HPV+ OSC tumour growth have not been explored. In this study, we investigated a staggered combination of aurora kinase inhibition, using alisertib, followed by CRISPR editing of E7, to determine if this would lead to better HPV+ OSC killing. Remarkably, genetic deletion of E7 alone was sufficient to effectively regress established HPV+ OSC tumours in vivo suggesting that E7 is essential in the maintenance of HPV+ OSC cancers.


Assuntos
Alphapapillomavirus , Carcinoma de Células Escamosas , Neoplasias Bucais , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomaviridae/genética , Alphapapillomavirus/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Proteínas E7 de Papillomavirus/genética , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Oncogenes , Aurora Quinases
16.
Front Immunol ; 13: 926262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757714

RESUMO

Since the start of the COVID-19 pandemic, multiple waves of SARS-CoV-2 variants have emerged. Of particular concern is the omicron variant, which harbors 28 mutations in the spike glycoprotein receptor binding and N-terminal domains relative to the ancestral strain. The high mutability of SARS-CoV-2 therefore poses significant hurdles for development of universal assays that rely on spike-specific immune detection. To address this, more conserved viral antigens need to be targeted. In this work, we comprehensively demonstrate the use of nucleocapsid (N)-specific detection across several assays using previously described nanobodies C2 and E2. We show that these nanobodies are highly sensitive and can detect divergent SARS-CoV-2 ancestral, delta and omicron variants across several assays. By comparison, spike-specific antibodies S309 and CR3022 only disparately detect SARS-CoV-2 variant targets. As such, we conclude that N-specific detection could provide a standardized universal target for detection of current and emerging SARS-CoV-2 variants of concern.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Anticorpos Monoclonais , Anticorpos Neutralizantes , COVID-19/diagnóstico , Humanos , Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo , Pandemias , SARS-CoV-2/genética
17.
Mol Diagn Ther ; 26(3): 301-308, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35380358

RESUMO

Despite a vaccine being available, human papillomavirus virus (HPV)-driven cancers remain the ninth most prevalent cancers globally. Current therapies have significant drawbacks and often still lead to poor prognosis and underwhelming survival rates. With gene therapy becoming more available in the clinic, it poses a new front for therapeutic development. A characteristic of HPV-driven cancers is the ability to encode oncoproteins that aberrate normal p53 function without mutating this tumour-suppressor gene. The HPV E6 oncoprotein degrades p53 to allow the HPV-driven carcinogenic process to proceed. This review aimed to investigate the use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) gene-editing technology and how it may be used to overcome HPV-mediated silencing of p53 by hyper-expressing the p53 promoter. Increasing p53 bioavailability may have promising potential as a therapy and has been a goal in the context of HPV-driven cancers. Clinical trials and proof-of-concept pre-clinical work have shown positive outcomes and tumour death when p53 levels are increased. Despite previous successes of RNA-based medicines, including the knockout of HPV oncogenes, the use of CRISPR activation is yet to be investigated as a promising potential therapy. This short review summarises key developments on attempts that have been made to increase p53 expression in the context of HPV cancer therapy, but leaves open the possibility for other cancers bearing a p53 wild-type gene.


Assuntos
Alphapapillomavirus , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Alphapapillomavirus/genética , Alphapapillomavirus/metabolismo , Feminino , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/genética , Papillomaviridae/metabolismo , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Proteínas Repressoras/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias do Colo do Útero/genética
18.
EMBO Mol Med ; 14(4): e15811, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35285158

RESUMO

There is an urgent need to bring new antivirals to SARS-CoV-2 to the market. Indeed, in the last 3 months, we have seen at least two new antivirals approved, molnupiravir and paxlovid. Both are older established antivirals that show some efficacy against SARS-CoV-2. The work by Chang et al (2022) in the current issue of EMBO Molecular Medicine explores the use of short interfering RNAs to directly target SARS-CoV-2 and shows that RNAi is an effective approach to reducing, or even eliminating viral replication, depending on the experimental setting. This antiviral effect results in significant prevention of infection-related pathology in animals. The key feature of this approach, besides its simplicity as naked siRNAs, is that all current variants are covered by this treatment.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/terapia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , SARS-CoV-2/genética , Replicação Viral
19.
Mol Ther Methods Clin Dev ; 24: 355-366, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35127966

RESUMO

SARS-CoV-2 (CoV-2) viral infection results in COVID-19 disease, which has caused significant morbidity and mortality worldwide. A vaccine is crucial to curtail the spread of SARS-CoV-2, while therapeutics will be required to treat ongoing and reemerging infections of SARS-CoV-2 and COVID-19 disease. There are currently no commercially available effective anti-viral therapies for COVID-19, urging the development of novel modalities. Here, we describe a molecular therapy specifically targeted to neutralize SARS-CoV-2, which consists of extracellular vesicles (EVs) containing a novel fusion tetraspanin protein, CD63, embedded within an anti-CoV-2 nanobody. These anti-CoV-2-enriched EVs bind SARS-CoV-2 spike protein at the receptor-binding domain (RBD) site and can functionally neutralize SARS-CoV-2. This work demonstrates an innovative EV-targeting platform that can be employed to target and inhibit the early stages of SARS-CoV-2 infection.

20.
Vet Microbiol ; 264: 109304, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34922148

RESUMO

DEAD (Asp-Glu-Ala-Asp)-box RNA helicases (DDX) play important roles in viral infection, either as cytosolic viral nucleic acids sensors or as essential host factors for viral replication. In this study, we identified DDX56 as a positive regulator for encephalomyocarditis virus (EMCV) replication. EMCV infection promotes DDX56 expression via its viral proteins, VP3 and 3C. We showed that DDX56 overexpression promotes EMCV replication whereas its loss dampened EMCV replication. Consequently, knockdown of DDX56 increases type I interferon (IFN) expression during EMCV infection. We also showed that DDX56 interrupts IFN regulatory factor 3 (IRF3) phosphorylation and its nucleus translocation by directly targeting KPNA3 and KPNA4 in an EMCV-triggered MDA5 signaling activation cascade leading to the blockade of IFN-ß production. Overall, we showed that DDX56 is a novel negative regulator of EMCV-mediated IFN-ß responses and that DDX56 plays a critical role in EMCV replication. These findings reveal a novel strategy for EMCV to utilize a host factor to evade the host innate immune response and provide us new insight into the function of DDX56.


Assuntos
RNA Helicases DEAD-box , Vírus da Encefalomiocardite , Interações Hospedeiro-Patógeno , Fator Regulador 3 de Interferon , Interferon beta , Transporte Proteico , Replicação Viral , Infecções por Cardiovirus/fisiopatologia , Infecções por Cardiovirus/virologia , Linhagem Celular , RNA Helicases DEAD-box/metabolismo , Vírus da Encefalomiocardite/fisiologia , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA