Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 240: 118328, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34224852

RESUMO

Previous work introduced the [11C]yohimbine as a suitable ligand of central α2-adrenoreceptors (α2-ARs) for PET imaging. However, reproducibility of [11C]yohimbine PET measurements in healthy humans estimated with a simplified modeling method with reference region, as well as sensitivity of [11C]yohimbine to noradrenergic competition were not evaluated. The objectives of the present study were therefore to fill this gap. METHODS: Thirteen healthy humans underwent two [11C]yohimbine 90-minute dynamic scans performed on a PET-MRI scanner. Seven had arterial blood sampling with metabolite assessment and plasmatic yohimbine free fraction evaluation at the first scan to have arterial input function and test appropriate kinetic modeling. The second scan was a simple retest for 6 subjects to evaluate the test-retest reproducibility. For the remaining 7 subjects the second scan was a challenge study with the administration of a single oral dose of 150 µg of clonidine 90 min before the PET scan. Parametric images of α2-ARs distribution volume ratios (DVR) were generated with two non-invasive models: Logan graphical analysis with Reference (LREF) and Simplified Reference Tissue Method (SRTM). Three reference regions (cerebellum white matter (CERWM), frontal white matter (FLWM), and corpus callosum (CC)) were tested. RESULTS: We showed high test-retest reproducibility of DVR estimation with LREF and SRTM regardless of reference region (CC, CERWM, FLWM). The best fit was obtained with SRTMCC (r2=0.94). Test-retest showed that the SRTMCC is highly reproducible (mean ICC>0.7), with a slight bias (-1.8%), whereas SRTMCERWM had lower bias (-0.1%), and excellent ICC (mean>0.8). Using SRTMCC, regional changes have been observed after clonidine administration with a significant increase reported in the amygdala and striatum as well as in several posterior cortical areas as revealed with the voxel-based analysis. CONCLUSION: The results add experimental support for the suitability of [11C]yohimbine PET in the quantitative assessment of α2-ARs occupancy in vivo in the human brain. Trial registration EudraCT 2018-000380-82.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 2/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono , Tomografia por Emissão de Pósitrons/normas , Ioimbina/metabolismo , Adulto , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Masculino , Tomografia por Emissão de Pósitrons/métodos , Padrões de Referência , Reprodutibilidade dos Testes , Adulto Jovem
2.
Mol Pharm ; 15(8): 3153-3166, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29989823

RESUMO

Accumulation of α-synuclein (α-syn) is a neuropathological hallmark of synucleinopathies. To date, no selective α-syn positron emission tomography (PET) radiotracer has been identified. Our objective was to develop the first original, selective, and specific α-syn PET radiotracer. Chemical design inspired from three structural families that demonstrated interesting α-syn binding characteristics was used as a starting point. Bioinformatics modeling of α-syn fibrils was then employed to select the best molecular candidates before their syntheses. An in vitro binding assay was performed to evaluate the affinity of the compounds. Radiotracer specificity and selectivity were assessed by in vitro autoradiography and in vivo PET studies in animal (rodents) models. Finally, gold standard in vitro autoradiography with patients' postmortem tissues was performed to confirm/infirm the α-syn binding characteristics. Two compounds exhibited a good brain availability and bound to α-syn and Aß fibrils in a rat model. In contrast, no signal was observed in a mouse model of synucleinopathy. Experiments in human tissues confirmed these negative results.


Assuntos
Encéfalo/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Compostos Radiofarmacêuticos/administração & dosagem , alfa-Sinucleína/metabolismo , Animais , Autorradiografia/métodos , Disponibilidade Biológica , Encéfalo/citologia , Encéfalo/patologia , Modelos Animais de Doenças , Desenho de Fármacos , Radioisótopos de Flúor/administração & dosagem , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Humanos , Corpos de Lewy/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Doença de Parkinson/genética , Doença de Parkinson/patologia , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA