Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1707: 464307, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37619255

RESUMO

Ultrafast affinity extraction (UAE) is a form of microscale affinity HPLC that can be employed to quickly measure equilibrium constants for solute-binding agent interactions in solution. This study used chromatographic and equilibrium theory with universal plots to examine the general conditions that are needed in UAE to obtain accurate, precise, and robust measurements of equilibrium constants for such interactions. The predicted results were compared to those obtained by UAE in studies that examined the binding of various drugs with two transport proteins: human serum albumin and α1-acid glycoprotein. The most precise and robust conditions for these binding studies occurred for systems with intermediate values for their equilibrium free fraction for the solute (F0 ≈ 0.20-0.80). These trends showed good agreement with those seen in prior studies using UAE. It was further determined how the apparent free fraction of a solute was related to the dissociation rate of this solute, the time allowed for solute dissociation during UAE, and the equilibrium free fraction for the solute. These results also agreed with experimental results, as obtained for the binding of warfarin and gliclazide with human serum albumin. The final section examined how a change in the apparent free fraction, as caused by solute dissociation, affected the accuracy of an equilibrium constant that was measured by UAE. In addition, theoretical plots were generated to allow the selection of conditions for UAE that provided a given level of accuracy during the measurement of an equilibrium constant. The equations created and trends identified for UAE were general ones that can be extended in future work to other solutes and binding agents.


Assuntos
Gliclazida , Humanos , Cromatografia Líquida de Alta Pressão , Orosomucoide , Albumina Sérica Humana , Varfarina
2.
Artigo em Inglês | MEDLINE | ID: mdl-37331054

RESUMO

Modification of proteins can occur during diabetes due to the formation of advanced glycation end-products (AGEs) with reactive dicarbonyls such as glyoxal (Go) and methylglyoxal (MGo). Human serum albumin (HSA) is a serum protein that binds to many drugs in blood and that is known to be modified by Go and MGo. This study examined the binding of various sulfonylurea drugs with these modified forms of HSA by using high-performance affinity microcolumns prepared by non-covalent protein entrapment. Zonal elution experiments were employed to compare the retention and overall binding constants for the drugs with Go- or MGo-modified HSA vs normal HSA. The results were compared to values from the literature, such as measured or estimated using affinity columns containing covalently immobilized HSA or biospecifically-adsorbed HSA. The entrapment-based approach provided estimates of global affinity constants within 3-5 min for most of the tested drugs and with typical precisions of ±10-23%. Each entrapped protein microcolumn was stable for over at least 60-70 injections and one month of use. The results obtained with normal HSA agreed at the 95% confidence level with global affinity constants that have been reported for the given drugs in the literature. It was found for HSA that had been modified with clinically-relevant levels of either Go or MGo that an increase in the global affinity constant of up to 2.1-fold occurred for some of the tested drugs. The information acquired in this study can be used in the future to adapt this entrapment-based approach to study and evaluate interactions between other types of drugs and normal or modified binding agents for clinical testing and biomedical research.


Assuntos
Albumina Sérica Humana , Albumina Sérica , Humanos , Albumina Sérica Humana/química , Albumina Sérica/química , Óxido de Magnésio , Ligação Proteica , Cromatografia de Afinidade/métodos , Compostos de Sulfonilureia/química
3.
Anal Chim Acta ; 1239: 340629, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628740

RESUMO

Reversible interactions between drugs and humic acid in water can be an important factor in determining the bioavailability and effects of these pharmaceuticals as micropollutants in the environment. In this study, microcolumns containing entrapped humic acid were used in high-performance affinity chromatography (HPAC) to examine the binding of this agent with the drugs tetracycline, carbamazepine, ciprofloxacin, and norfloxacin. Parameters that were varied to optimize the entrapment of humic acid within HPLC-grade porous silica included the starting concentration of humic acid, the mass ratio of humic acid vs silica, and the method of mixing the reagents with the support for the entrapment process. The highest retention for the tested drugs was obtained when using supports that were prepared using an initial humic acid concentration of 80 mg mL-1 and a humic acid vs silica mass ratio of 600 mg per g silica, along with preincubation of the humic acid with hydrazide-activated silica before the addition of a capping agent (i.e., oxidized glycogen). Characterization of the humic acid support was also carried out by means of TGA, FTIR, SEM, and energy-dispersive X-ray spectroscopy. The binding constants measured by HPAC for the given drugs with entrapped Aldrich humic acid gave good agreement with values reported in the literature under similar pH and temperature conditions for this and other forms of humic acid. Besides providing valuable data on the binding strength of various drugs with humic acid, this work illustrates how HPAC may be used as an analytical tool for screening and characterizing the interactions of drugs and man-made contaminants with humic acid or related binding agents in water and the environment.


Assuntos
Substâncias Húmicas , Albumina Sérica , Humanos , Albumina Sérica/química , Carbamazepina , Cromatografia de Afinidade/métodos , Dióxido de Silício/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-36272357

RESUMO

Ultrafast affinity extraction (UAE) and affinity microcolumns containing immobilized human serum albumin (HSA) were employed to evaluate the effect of advanced stage glycation on HSA and its binding to warfarin, a common site-specific probe for Sudlow site I of this protein. The modification of HSA by glyoxal (GO) and methylglyoxal (MGO) was considered, where GO and MGO are known to be important in the formation of many types of advanced glycation end products. Free drug fractions were measured by UAE for warfarin in solutions containing normal HSA or HSA that had been modified by GO or MGO at levels seen in serum during diabetes. The free fractions measured with the GO-modified HSA gave association equilibrium constants that ranged from 2.42-2.63 × 105 M-1 at pH 7.4 and 37 °C. These values were not significantly different from a value of 2.33 (±0.15) × 105 M-1 that was determined by the same method for warfarin with normal HSA. Similar studies using MGO-modified HSA gave association equilibrium constants for warfarin in the range of 3.07-3.31 × 105 M-1, which were 1.32- to 1.42-fold higher than the value seen for normal HSA (differences that were significant at the 95% confidence level). These results will be valuable in future binding studies based on affinity chromatography or other methods that employ warfarin as a probe to examine drug interactions at Sudlow site I of HSA and modified forms of this protein. This work also illustrates how UAE can be used, with analysis times of only minutes, to detect and measure small changes in the binding by drugs with unmodified or modified forms of a soluble binding agent or protein.


Assuntos
Albumina Sérica Humana , Varfarina , Humanos , Varfarina/química , Albumina Sérica Humana/química , Aldeído Pirúvico , Glioxal , Albumina Sérica/química , Óxido de Magnésio , Ligação Proteica , Cromatografia de Afinidade/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-34823097

RESUMO

Ultrafast affinity extraction (UAE) has recently been developed and employed for measuring non-bound (or free) fractions and binding or rate constants for drugs and other targets with soluble binding agents such as serum proteins. This study examined the long-term stability of 10 mm × 2.1 mm i.d. affinity microcolumns when used in UAE at both low and high flow rates (e.g., 0.5 and 3.5 mL/min) over an extended series of injections. This stability was investigated by using immobilized human serum albumin (HSA) and samples containing the drug warfarin with or without soluble HSA as a model system. The free warfarin fractions measured at 0.5 mL/min in the presence of soluble HSA were stable up to 150 injections and changed by <10% at 3.5 mL/min. The association equilibrium constant for warfarin with HSA that was estimated by UAE at 3.5 mL/min had no significant change over 50 injections and a change of only ∼18-22% over 100-150 injections. The dissociation rate constant for warfarin from HSA was found by combining UAE results at 0.5 and 3.5 mL/min and employing a new two-point approach, with no significant changes in this value being seen even after 200 injections. The effects of extended microcolumn use on the retention time, peak width, and peak asymmetry for warfarin, and on the backpressure of the microcolumn, were also considered. These results indicated that UAE and HSA microcolumns could be used to provide consistent values for free solute fractions, binding constants, and rate constants over a large series of injections. These results should be useful in future work by providing guidelines for the assessment, further development, and use of UAE in characterizing interactions involving other drugs and binding agents in solution-based samples.


Assuntos
Cromatografia de Afinidade/instrumentação , Cromatografia de Afinidade/métodos , Humanos , Modelos Lineares , Modelos Químicos , Ligação Proteica , Reprodutibilidade dos Testes , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Fatores de Tempo , Varfarina/análise , Varfarina/química , Varfarina/metabolismo
6.
Adv Chromatogr ; 58: 1-74, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36186535

RESUMO

Affinity chromatography is a technique that uses a stationary phase based on the supramolecular interactions that occur in biological systems or mimics of these systems. This method has long been a popular tool for the isolation, measurement, and characterization of specific targets in complex samples. This review discusses the basic concepts of this method and examines recent developments in affinity chromatography and related supramolecular separation methods. Topics that are examined include advances that have occurred in the types of supports, approaches to immobilization, and binding agents that are employed in this method. New developments in the applications of affinity chromatography are also summarized, including an overview on the use of this method for biochemical purification, sample preparation or analysis, chiral separations, and biointeraction studies.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32871378

RESUMO

The field of affinity chromatography, which employs a biologically-related agent as the stationary phase, has seen significant growth since the modern era of this method began in 1968. This review examines the major developments and trends that have occurred in this technique over the past five decades. The basic principles and history of this area are first discussed. This is followed by an overview of the various supports, immobilization strategies, and types of binding agents that have been used in this field. The general types of applications and fields of use that have appeared for affinity chromatography are also considered. A survey of the literature is used to identify major trends in these topics and important areas of use for affinity chromatography in the separation, analysis, or characterization of chemicals and biochemicals.


Assuntos
Cromatografia de Afinidade , Bioquímica , Pesquisa Biomédica , Biotecnologia , Cromatografia de Afinidade/história , Cromatografia de Afinidade/métodos , Cromatografia de Afinidade/tendências , História do Século XX , História do Século XXI , Humanos
8.
Front Chem ; 7: 673, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681727

RESUMO

Important information on chemical processes in living systems can be obtained by the rates at which these biological interactions occur. This review will discuss several techniques based on traditional and high-performance affinity chromatography that may be used to examine the kinetics of biological reactions. These methods include band-broadening measurements, techniques for peak fitting, split-peak analysis, peak decay studies, and ultrafast affinity extraction. The general principles and theory of each method, as applied to the determination of rate constants, will be discussed. The applications of each approach, along with its advantages and limitations, will also be considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA