Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(1): e0262488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35085309

RESUMO

Cellular senescence is accompanied by metabolic and epigenomic remodeling, but the transcriptional mechanism of this process is unclear. Our previous RNA interference-based screen of chromatin factors found that lysine methyltransferases including SETD8 and NSD2 inhibited the senescence program in cultured fibroblasts. Here, we report that loss of the zinc finger and homeobox protein 3 (ZHX3), a ubiquitously expressed transcription repressor, induced senescence-associated gene expression and mitochondrial-nucleolar activation. Chromatin immunoprecipitation-sequencing analyses of growing cells revealed that ZHX3 was enriched at the transcription start sites of senescence-associated genes such as the cyclin-dependent kinase inhibitor (ARF-p16INK4a) gene and ribosomal RNA (rRNA) coding genes. ZHX3 expression was consistently downregulated in cells with replicative or oncogene-induced senescence. Mass spectrometry-based proteomics identified 28 proteins that interacted with ZHX3, including ATP citrate lyase and RNA metabolism proteins. Loss of ZHX3 or ZHX3-interaction partners by knockdown similarly induced the expression of p16INK4a and rRNA genes. Zhx3-knockout mice showed upregulation of p16INK4a in the testes, thymus and skeletal muscle tissues, together with relatively short survival periods in males. These data suggested that ZHX3 plays an essential role in transcriptional control to prevent cellular senescence.


Assuntos
Nucléolo Celular/genética , Senescência Celular/genética , Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Mitocôndrias/genética , Proteínas Repressoras/genética , Animais , Proliferação de Células/genética , Cromatina/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Replicação do DNA/genética , Regulação para Baixo/genética , Epigenômica/métodos , Feminino , Fibroblastos/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico/genética , Sítio de Iniciação de Transcrição/fisiologia , Regulação para Cima/genética
2.
Aging Cell ; 19(7): e13173, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32573059

RESUMO

Senescent cells may possess the intrinsic programs of metabolic and epigenomic remodeling, but the molecular mechanism remains to be clarified. Using an RNAi-based screen of chromatin regulators, we found that knockdown of the NSD2/WHSC1/MMSET methyltransferase induced cellular senescence that augmented mitochondrial mass and oxidative phosphorylation in primary human fibroblasts. Transcriptome analysis showed that loss of NSD2 downregulated the expression of cell cycle-related genes in a retinoblastoma protein (RB)-mediated manner. Chromatin immunoprecipitation analyses further revealed that NSD2 was enriched at the gene bodies of actively transcribed genes, including cell cycle-related genes, and that loss of NSD2 decreased the levels of histone H3 lysine 36 trimethylation (H3K36me3) at these gene loci. Consistent with these findings, oncogene-induced or replicative senescent cells showed reduced NSD2 expression together with lower H3K36me3 levels at NSD2-enriched genes. In addition, we found that NSD2 gene was upregulated by serum stimulation and required for the induction of cell cycle-related genes. Indeed, in both mouse and human tissues and human cancer cell lines, the expression levels of NSD2 were positively correlated with those of cell cycle-related genes. These data reveal that NSD2 plays a pivotal role in epigenomic maintenance and cell cycle control to prevent cellular senescence.


Assuntos
Senescência Celular/fisiologia , Epigenômica/métodos , Histona-Lisina N-Metiltransferase/metabolismo , Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Animais , Humanos , Masculino , Camundongos
3.
Cell Rep ; 18(9): 2148-2161, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28249161

RESUMO

Cellular senescence is an irreversible growth arrest that contributes to development, tumor suppression, and age-related conditions. Senescent cells show active metabolism compared with proliferating cells, but the underlying mechanisms remain unclear. Here we show that the SETD8/PR-Set7 methyltransferase, which catalyzes mono-methylation of histone H4 at lysine 20 (H4K20me1), suppresses nucleolar and mitochondrial activities to prevent cellular senescence. SETD8 protein was selectively downregulated in both oncogene-induced and replicative senescence. Inhibition of SETD8 alone was sufficient to trigger senescence. Under these states, the expression of genes encoding ribosomal proteins (RPs) and ribosomal RNAs as well as the cyclin-dependent kinase (CDK) inhibitor p16INK4A was increased, with a corresponding reduction of H4K20me1 at each locus. As a result, the loss of SETD8 concurrently stimulated nucleolar function and retinoblastoma protein-mediated mitochondrial metabolism. In conclusion, our data demonstrate that SETD8 acts as a barrier to prevent cellular senescence through chromatin-mediated regulation of senescence-associated metabolic remodeling.


Assuntos
Senescência Celular/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Metiltransferases/metabolismo , Linhagem Celular , Nucléolo Celular/metabolismo , Cromatina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Replicação do DNA/fisiologia , Regulação para Baixo/fisiologia , Regulação da Expressão Gênica/fisiologia , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Mitocôndrias/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo
4.
Aging Cell ; 14(4): 689-97, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26009982

RESUMO

Metabolism is closely linked with cellular state and biological processes, but the mechanisms controlling metabolic properties in different contexts remain unclear. Cellular senescence is an irreversible growth arrest induced by various stresses, which exhibits active secretory and metabolic phenotypes. Here, we show that retinoblastoma protein (RB) plays a critical role in promoting the metabolic flow by activating both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) in cells that have undergone oncogene-induced senescence (OIS). A combination of real-time metabolic monitoring, and metabolome and gene expression analyses showed that OIS-induced fibroblasts developed an accelerated metabolic flow. The loss of RB downregulated a series of glycolytic genes and simultaneously reduced metabolites produced from the glycolytic pathway, indicating that RB upregulates glycolytic genes in OIS cells. Importantly, both mitochondrial OXPHOS and glycolytic activities were abolished in RB-depleted or downstream glycolytic enzyme-depleted OIS cells, suggesting that RB-mediated glycolytic activation induces a metabolic flux into the OXPHOS pathway. Collectively, our findings reveal that RB essentially functions in metabolic remodeling and the maintenance of the active energy production in OIS cells.


Assuntos
Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes ras , Glicólise/genética , Fosforilação Oxidativa , Proteína do Retinoblastoma/genética , Linhagem Celular Tumoral , Senescência Celular/genética , Ciclo do Ácido Cítrico/genética , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Proteína do Retinoblastoma/deficiência , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA