Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(45): 42114-42125, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024698

RESUMO

The kinetic resolution of racemic 1H,3H-thiazolo[3,4-a]benzimidazoline (TBIM) heterocycles was achieved using E. coli whole cells expressing the MAO-N D11 enzyme. Several cosolvents were screened using TBIM 2a as the substrate. DMF was the best cosolvent, affording the pure enantiomer (+)-2a in 44% yield, 94% ee. The stereochemistry of TBIM was predicted by means of ab initio calculations of optical rotation and circular dichroism spectra. The reaction scope was investigated for 11 substituted (±) TBIM using an optimized protocol. The best yield and % ee were obtained for the nonsubstituted 2a. Among the substituted compounds, the 5-substituted-TBIM showed better % ee than the 4-substituted one. The small electron donor group (Me) led to better % ee than the electron-withdrawing groups (-NO2 and -CO2Et), and the bulky naphthyl group was detrimental for the kinetic resolution. Docking experiments and molecular dynamics (MD) simulations were employed to further understand the interactions between MAO-N D11 and the thiazolo-benzimidazoline substrates. For 2a, the MD showed favorable positioning and binding energy for both enantiomers, thus suggesting that this kinetic resolution is influenced not only by the active site but also by the entry tunnel. This work constitutes the first report of the enzymatic kinetic resolution applied to TBIM heterocycles.

2.
J Biotechnol ; 366: 19-24, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36870480

RESUMO

Glycerol dehydrogenase (GldA) from Escherichia coli BW25113, naturally catalyzes the oxidation of glycerol to dihydroxyacetone. It is known that GldA exhibits promiscuity towards short-chain C2-C4 alcohols. However, there are no reports regarding the substrate scope of GldA towards larger substrates. Herein we demonstrate that GldA can accept bulkier C6-C8 alcohols than previously anticipated. Overexpression of the gldA gene in the knockout background, E. coli BW25113 ΔgldA, was strikingly effective converting 2 mM of the compounds: cis-dihydrocatetechol, cis-(1 S,2 R)- 3-methylcyclohexa-3,5-diene-1,2-diol and cis-(1 S,2 R)- 3-ethylcyclohexa-3,5-diene-1,2-diol, into 2.04 ± 0.21 mM of catechol, 0.62 ± 0.11 mM 3-methylcatechol, and 0.16 ± 0.02 mM 3-ethylcatechol, respectively. In-silico studies on the active site of GldA enlightened the decrease in product formation as the steric substrate demand increased. These results are of high interests for E. coli-based cell factories expressing Rieske non-heme iron dioxygenases, producing cis-dihydrocatechols, since such sough-after valuable products can be immediately degraded by GldA, substantially hampering the expected performance of the recombinant platform.


Assuntos
Dioxigenases , Desidrogenase do Álcool de Açúcar , Escherichia coli/genética , Escherichia coli/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Dioxigenases/metabolismo , Oxirredução , Glicerol/metabolismo
3.
Nat Prod Res ; 33(20): 2951-2957, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30304960

RESUMO

Two Streptomyces spp. strains responsible for potato common scab infections in Uruguay which do not produce diketopiperazines were identified through whole-genome sequencing, and the virulence factor produced by one of them was isolated and characterized. Phylogenetic analysis showed that both pathogenic strains can be identified as S. niveiscabiei, and the structure of the phytotoxin was elucidated as that of the polyketide desmethylmensacarcin using MS and NMR methods. The metabolite is produced in yields of ∼200 mg/L of culture media, induces deep necrotic lesions on potato tubers, stuns root and shoot growth in radish seedlings, and is comparatively more aggressive than thaxtomin A. This is the first time that desmethylmensacarcin, a member of a class of compounds known for their antitumor and antibiotic activity, is associated with phytotoxicity. More importantly, it represents the discovery of a new virulence factor related to potato common scab, an economically-important disease affecting potato production worldwide.


Assuntos
Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Streptomyces/química , Dicetopiperazinas , Indóis/toxicidade , Estrutura Molecular , Filogenia , Piperazinas/toxicidade , Doenças das Plantas/etiologia , Raphanus/microbiologia , Streptomyces/patogenicidade , Fatores de Virulência/química , Fatores de Virulência/isolamento & purificação
4.
Appl Microbiol Biotechnol ; 101(14): 5677-5687, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28516206

RESUMO

Chiral amines are essential precursors in the production of biologically active compounds, including several important drugs. Among the biocatalytic strategies that have been developed for their synthesis, the use of ω-transaminases (ω-TA) appears as an attractive alternative allowing the stereoselective amination of prochiral ketones. However, the problems associated with narrow substrate specificity, unfavourable reaction equilibrium and expensive amine donors still hamper its industrial application. The search for novel enzymes from nature can contribute to expand the catalytic repertoire of ω-TA and help to circumvent some of these problems. A genome mining approach, based on the work described by Höhne et al., was applied for selection of potential R-ω-TA. Additional criteria were used to select an enzyme that differs from previously described ones. A candidate R-ω-TA from Capronia semiimmersa was selected, cloned and expressed in Escherichia coli. Interestingly, alignment of this enzyme with previously reported TA sequences revealed the presence of two additional amino acid residues in a loop close to the active site. The impact of this change was analysed with a structural model based on crystallized R-ω-TAs. Analysis of the substrate specificity of R-ω-TA from C. semiimmersa indicates that it accepts a diversity of ketones as substrates yielding the corresponding amine with good yields and excellent enantioselectivity. The expressed enzyme accepts isopropylamine as amine donor what makes it suitable for industrial processes.


Assuntos
Ascomicetos/enzimologia , Transaminases/genética , Transaminases/metabolismo , Ascomicetos/genética , Biocatálise , Domínio Catalítico , Clonagem Molecular , Cristalização , Escherichia coli/genética , Genoma Fúngico , Cetonas/química , Propilaminas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Transaminases/química , Transaminases/isolamento & purificação
5.
Chembiochem ; 17(4): 291-5, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26663213

RESUMO

Enzymatic dioxygenation of benzyl azide by toluene dioxygenase (TDO) produces significant amounts of the cis-cyclohexadienediol derived from benzonitrile, along with the expected azido diols. We demonstrate that TDO catalyses the oxidation of benzyl azide to benzonitrile, which is further dioxygenated to produce the observed cis-diol. A proposed mechanism for this transformation involves initial benzylic monooxygenation followed by a nitrene-mediated rearrangement to form an oxime, which is further dehydrated to afford the nitrile. To the best of our knowledge, this is the first report of enzymatic oxidation of an alkyl azide to a nitrile. In addition, the described oxime-dehydration activity has not been reported for Rieske dioxygenases.


Assuntos
Azidas/metabolismo , Nitrilas/metabolismo , Oxigenases/metabolismo , Pseudomonas putida/enzimologia , Azidas/química , Compostos de Benzil/química , Compostos de Benzil/metabolismo , Modelos Moleculares , Nitrilas/química , Oxirredução , Oxigenases/química , Pseudomonas putida/química , Pseudomonas putida/metabolismo
6.
Angew Chem Int Ed Engl ; 53(9): 2447-50, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24478044

RESUMO

Biocatalytic approaches to the synthesis of optically pure chiral amines, starting from simple achiral building blocks, are highly desirable because such motifs are present in a wide variety of important natural products and pharmaceutical compounds. Herein, a novel one-pot ω-transaminase (TA)/monoamine oxidase (MAO-N) cascade process for the synthesis of chiral 2,5-disubstituted pyrrolidines is reported. The reactions proceeded with excellent enantio- and diastereoselectivity (>94 % ee; >98 % de) and can be performed on a preparative scale. This methodology exploits the complementary regio- and stereoselectivity displayed by both enzymes, which ensures that the stereogenic center established by the transaminase is not affected by the monoamine oxidase, and highlights the potential of this multienzyme cascade for the efficient synthesis of chiral building blocks.


Assuntos
Aspergillus niger/enzimologia , Monoaminoxidase/metabolismo , Neisseriaceae/enzimologia , Pirrolidinas/síntese química , Pirrolidinas/metabolismo , Transaminases/metabolismo , Biocatálise , Pirrolidinas/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA