Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cells ; 12(6)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36980186

RESUMO

Acute kidney injury (AKI) leads to acute cardiac injury and dysfunction in cardiorenal syndrome Type 3 (CRS3) through oxidative stress (OS). The stress-inducible Sestrin2 (Sesn2) protein reduces reactive oxygen species (ROS) accumulation and activates AMP-dependent protein kinase (AMPK) to regulate cellular metabolism and energetics during OS. Sesn2 levels and its protective effects decline in the aged heart. Antidiabetic drug metformin upregulates Sesn2 levels in response to ischemia-reperfusion (IR) stress. However, the role of metformin in CRS3 remains unknown. This study seeks to explore how the age-related decrease in cardiac Sesn2 levels contributes to cardiac intolerance to AKI-induced insults, and how metformin ameliorates CRS3 through Sesn2. Young (3-5 months) and aged (21-23 months) C57BL/6J wild-type mice along with cardiomyocyte-specific knockout (cSesn2-/-) and their wild type of littermate (Sesn2f/f) C57BL/6J mice were subjected to AKI for 15 min followed by 24 h of reperfusion. Cardiac and mitochondrial functions were evaluated through echocardiograms and seahorse mitochondria respirational analysis. Renal and cardiac tissue was collected for histological analysis and immunoblotting. The results indicate that metformin could significantly rescue AKI-induced cardiac dysfunction and injury via Sesn2 through an improvement in systolic and diastolic function, fibrotic and cellular damage, and mitochondrial function in young, Sesn2f/f, and especially aged mice. Metformin significantly increased Sesn2 expression under AKI stress in the aged left-ventricular tissue. Thus, this study suggests that Sesn2 mediates the cardioprotective effects of metformin during post-AKI.


Assuntos
Injúria Renal Aguda , Síndrome Cardiorrenal , Metformina , Camundongos , Animais , Metformina/farmacologia , Metformina/uso terapêutico , Síndrome Cardiorrenal/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Endogâmicos C57BL , Injúria Renal Aguda/tratamento farmacológico
2.
Aging Cell ; 22(4): e13800, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36797808

RESUMO

Ischemic heart disease (IHD) is the leading cause of death, with age range being the primary factor for development. The mechanisms by which aging increases vulnerability to ischemic insult are not well understood. We aim to use single-cell RNA sequencing to discover transcriptional differences in various cell types between aged and young mice, which may contribute to aged-related vulnerability to ischemic insult. Utilizing 10× Genomics Single-Cell RNA sequencing, we were able to complete bioinformatic analysis to identity novel differential gene expression. During the analysis of our collected samples, we detected Pyruvate Dehydrogenase Kinase 4 (Pdk4) expression to be remarkably differentially expressed. Particularly in cardiomyocyte cell populations, Pdk4 was found to be significantly upregulated in the young mouse population compared to the aged mice under ischemic/reperfusion conditions. Pdk4 is responsible for inhibiting the enzyme pyruvate dehydrogenase, resulting in the regulation of glucose metabolism. Due to decreased Pdk4 expression in aged cardiomyocytes, there may be an increased reliance on glucose oxidization for energy. Through biochemical metabolomics analysis, it was observed that there is a greater abundance of pyruvate in young hearts in contrast to their aged counterparts, indicating less glycolytic activity. We believe that Pdk4 response provides valuable insight towards mechanisms that allow for the young heart to handle ischemic insult stress more effectively than the aged heart.


Assuntos
Miócitos Cardíacos , Proteínas Quinases , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Proteínas Quinases/metabolismo , Piruvatos , Envelhecimento/genética
3.
Cells ; 11(16)2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36010689

RESUMO

Obesity is of concern to the population because it is known to cause inflammation and oxidative stress throughout the body, leading to patient predisposition for health conditions such as diabetes, hypertension, and some cancers. However, some proteins that are activated in times of oxidative stress may provide cytoprotective properties. In this study, we aim to gain further understanding of the interconnection between Nrf2 and Sesn2 during obesity-related stress and how this relationship can play a role in cardio-protection. Cardiomyocyte-specific Sesn2 knockout (cSesn2-/-) and Sesn2 overexpressed (tTa-tet-Sesn2) mice and their wildtype littermates (Sesn2flox/flox and tet-Sesn2, respectively) were assigned to either a normal chow (NC) or a high-fat (HF) diet to induce obesity. After 16 weeks of dietary intervention, heart function was evaluated via echocardiography and cardiac tissue was collected for analysis. Immunoblotting, histology, and ROS staining were completed. Human heart samples were obtained via the LifeLink Foundation and were also subjected to analysis. Overall, these results indicated that the overexpression of Sesn2 appears to have cardio-protective effects on the obese heart through the reduction of ROS and fibrosis present in the tissues and in cardiac function. These results were consistent for both mouse and human heart samples. In human samples, there was an increase in Sesn2 and Nrf2 expression in the obese patients' LV tissue. However, there was no observable pattern of Sesn2/Nrf2 expression in mouse LV tissue samples. Further investigation into the link between the Sesn2/Nrf2 pathway and obesity-related oxidative stress is needed.


Assuntos
Cardiopatias , Fator 2 Relacionado a NF-E2 , Animais , Humanos , Camundongos , Dieta Hiperlipídica , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Obesidade , Espécies Reativas de Oxigênio/metabolismo , Sestrinas
4.
Microbiol Resour Announc ; 10(28): e0051621, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34264121

RESUMO

Cluster EK2 Akoni, Ashton, and Truong are lytic Podoviridae actinobacteriophages that were isolated from soil in Florida using Microbacterium foliorum NRRL B-24224 as the host. The genomes are 54,307 bp, 54,560 bp, and 54,309 bp, respectively, and are 60% GC rich. Each genome contains a novel 13,464-bp gene that encompasses 25% of the genome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA