Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38796707

RESUMO

Lafora disease is a rare and fatal form of progressive myoclonic epilepsy typically occurring early in adolescence. The disease results from mutations in the EPM2A gene, encoding laforin, or the EPM2B gene, encoding malin. Laforin and malin work together in a complex to control glycogen synthesis and prevent the toxicity produced by misfolded proteins via the ubiquitin-proteasome system. Disruptions in either protein cause alterations in this complex, leading to the formation of Lafora bodies containing abnormal, insoluble, and hyperphosphorylated forms of glycogen. We used the Epm2a-/- knockout mouse model of Lafora disease to apply gene therapy by administering intracerebroventricular injections of a recombinant adeno-associated virus carrying the human EPM2A gene. We evaluated the effects of this treatment through neuropathological studies, behavioral tests, video-electroencephalography, electrophysiological recordings, and proteomic/phosphoproteomic analysis. Gene therapy ameliorated neurological and histopathological alterations, reduced epileptic activity and neuronal hyperexcitability, and decreased the formation of Lafora bodies. Moreover, differential quantitative proteomics and phosphoproteomics revealed beneficial changes in various molecular pathways altered in Lafora disease. Our results represent proof of principle for gene therapy with the coding region of the human EPM2A gene as a treatment for EPM2A-related Lafora disease.

2.
Epilepsy Res ; 200: 107317, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38341935

RESUMO

Lafora disease is a rare and fatal form of progressive myoclonic epilepsy with onset during early adolescence. The disease is caused by mutations in EPM2A, encoding laforin, or EPM2B, encoding malin. Both proteins have functions that affect glycogen metabolism, including glycogen dephosphorylation by laforin and ubiquitination of enzymes involved in glycogen metabolism by malin. Lack of function of laforin or malin results in the accumulation of polyglucosan that forms Lafora bodies in the central nervous system and other tissues. Enzyme replacement therapy through intravenous administration of alglucosidase alfa (Myozyme®) has shown beneficial effects removing polyglucosan aggregates in Pompe disease. We evaluated the effectiveness of intracerebroventricular administration of alglucosidase alfa in the Epm2a-/- knock-out and Epm2aR240X knock-in mouse models of Lafora disease. Seven days after a single intracerebroventricular injection of alglucosidase alfa in 12-month-old Epm2a-/- and Epm2aR240X mice, the number of Lafora bodies was not reduced. Additionally, a prolonged infusion of alglucosidase alfa for 2 or 4 weeks in 6- and 9-month-old Epm2a-/- mice did not result in a reduction in the number of LBs or the amount of glycogen in the brain. These findings hold particular significance in guiding a rational approach to the utilization of novel therapies in Lafora disease.


Assuntos
Doença de Lafora , alfa-Glucosidases , Camundongos , Animais , Doença de Lafora/tratamento farmacológico , Doença de Lafora/genética , Camundongos Knockout , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Glicogênio/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética
3.
Neurobiol Dis ; 181: 106119, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37059210

RESUMO

Lafora disease is a rare recessive form of progressive myoclonic epilepsy, usually diagnosed during adolescence. Patients present with myoclonus, neurological deterioration, and generalized tonic-clonic, myoclonic, or absence seizures. Symptoms worsen until death, usually within the first ten years of clinical onset. The primary histopathological hallmark is the formation of aberrant polyglucosan aggregates called Lafora bodies in the brain and other tissues. Lafora disease is caused by mutations in either the EPM2A gene, encoding laforin, or the EPM2B gene, coding for malin. The most frequent EPM2A mutation is R241X, which is also the most prevalent in Spain. The Epm2a-/- and Epm2b-/- mouse models of Lafora disease show neuropathological and behavioral abnormalities similar to those seen in patients, although with a milder phenotype. To obtain a more accurate animal model, we generated the Epm2aR240X knock-in mouse line with the R240X mutation in the Epm2a gene, using genetic engineering based on CRISPR-Cas9 technology. Epm2aR240X mice exhibit most of the alterations reported in patients, including the presence of LBs, neurodegeneration, neuroinflammation, interictal spikes, neuronal hyperexcitability, and cognitive decline, despite the absence of motor impairments. The Epm2aR240X knock-in mouse displays some symptoms that are more severe that those observed in the Epm2a-/- knock-out, including earlier and more pronounced memory loss, increased levels of neuroinflammation, more interictal spikes and increased neuronal hyperexcitability, symptoms that more precisely resemble those observed in patients. This new mouse model can therefore be specifically used to evaluate how new therapies affects these features with greater precision.


Assuntos
Disfunção Cognitiva , Doença de Lafora , Animais , Camundongos , Disfunção Cognitiva/genética , Doença de Lafora/genética , Doença de Lafora/patologia , Camundongos Knockout , Doenças Neuroinflamatórias , Proteínas Tirosina Fosfatases não Receptoras/genética , Ubiquitina-Proteína Ligases/genética
4.
Neurotherapeutics ; 20(1): 230-244, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36303102

RESUMO

Lafora disease is a fatal form of progressive myoclonic epilepsy caused by mutations in the EPM2A or NHLRC1/EPM2B genes that usually appears during adolescence. The Epm2a-/- and Epm2b-/- knock-out mouse models of the disease develop behavioral and neurological alterations similar to those observed in patients. The aim of this work is to analyze whether early treatment with metformin (from conception to adulthood) ameliorates the formation of Lafora bodies and improves the behavioral and neurological outcomes observed with late treatment (during 2 months at 10 months of age). We also evaluated the benefits of metformin in patients with Lafora disease. To assess neurological improvements due to metformin administration in the two mouse models, we evaluated the effects on pentylenetetrazol sensitivity, posturing, motor coordination and activity, and memory. We also analyzed the effects on Lafora bodies, neurodegeneration, and astrogliosis. Furthermore, we conducted a follow-up study of an initial cohort of 18 patients with Lafora disease, 8 treated with metformin and 10 untreated. Our results indicate that early metformin was more effective than late metformin in Lafora disease mouse models improving neurological alterations of both models such as neuronal hyperexcitability, motor and memory alterations, neurodegeneration, and astrogliosis and decreasing the formation of Lafora bodies. Moreover, patients receiving metformin had a slower progression of the disease. Overall, early treatment improves the outcome seen with late metformin treatment in the two knock-out mouse models of Lafora disease. Metformin-treated patients exhibited an ameliorated course of the disease with slower deterioration of their daily living activities.


Assuntos
Doença de Lafora , Metformina , Animais , Camundongos , Doença de Lafora/tratamento farmacológico , Doença de Lafora/genética , Metformina/uso terapêutico , Gliose , Seguimentos , Ubiquitina-Proteína Ligases/genética
5.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168354

RESUMO

Lafora disease is a rare and fatal form of progressive myoclonic epilepsy typically occurring early in adolescence. Common symptoms include seizures, dementia, and a progressive neurological decline leading to death within 5-15 years from onset. The disease results from mutations transmitted with autosomal recessive inheritance in the EPM2A gene, encoding laforin, a dual-specificity phosphatase, or the EPM2B gene, encoding malin, an E3-ubiquitin ligase. Laforin has glucan phosphatase activity, is an adapter of enzymes involved in glycogen metabolism, is involved in endoplasmic reticulum-stress and protein clearance, and acts as a tumor suppressor protein. Laforin and malin work together in a complex to control glycogen synthesis and prevent the toxicity produced by misfolded proteins via the ubiquitin-proteasome system. Disruptions in either protein can lead to alterations in this complex, leading to the formation of Lafora bodies that contain abnormal, insoluble, and hyperphosphorylated forms of glycogen called polyglucosans. We used the Epm2a -/- knock-out mouse model of Lafora disease to apply a gene replacement therapy by administering intracerebroventricular injections of a recombinant adeno-associated virus carrying the human EPM2A gene. We evaluated the effects of this treatment by means of neuropathological studies, behavioral tests, video-electroencephalography recording, and proteomic/phosphoproteomic analysis. Gene therapy with recombinant adeno-associated virus containing the EPM2A gene ameliorated neurological and histopathological alterations, reduced epileptic activity and neuronal hyperexcitability, and decreased the formation of Lafora bodies. Differential quantitative proteomics and phosphoproteomics revealed beneficial changes in various molecular pathways altered in Lafora disease. Improvements were observed for up to nine months following a single intracerebroventricular injection. In conclusion, gene replacement therapy with human EPM2A gene in the Epm2a -/- knock-out mice shows promise as a potential treatment for Lafora disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA