Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(14): 147703, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891439

RESUMO

Transport measurements through a few-electron circular quantum dot in bilayer graphene display bunching of the conductance resonances in groups of four, eight, and twelve. This is in accordance with the spin and valley degeneracies in bilayer graphene and an additional threefold "minivalley degeneracy" caused by trigonal warping. For small electron numbers, implying a small dot size and a small displacement field, a two-dimensional s shell and then a p shell are successively filled with four and eight electrons, respectively. For electron numbers larger than 12, as the dot size and the displacement field increase, the single-particle ground state evolves into a threefold degenerate minivalley ground state. A transition between these regimes is observed in our measurements and can be described by band-structure calculations. Measurements in the magnetic field confirm Hund's second rule for spin filling of the quantum dot levels, emphasizing the importance of exchange interaction effects.

2.
Rev Sci Instrum ; 90(11): 113901, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31779415

RESUMO

Experiments performed at a temperature of a few millikelvins require effective thermalization schemes, low-pass filtering of the measurement lines, and low-noise electronics. Here, we report on the modifications to a commercial dilution refrigerator with a base temperature of 3.5 mK that enable us to lower the electron temperature to 6.7 mK measured from the Coulomb peak width of a quantum dot gate-defined in an [Al]GaAs heteostructure. We present the design and implementation of a liquid 4He immersion cell tight against superleaks, implement an innovative wiring technology, and develop optimized transport measurement procedures.

3.
Nat Commun ; 10(1): 5037, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695044

RESUMO

Spin qubits and superconducting qubits are among the promising candidates for realizing a solid state quantum computer. For the implementation of a hybrid architecture which can profit from the advantages of either approach, a coherent link is necessary that integrates and controllably couples both qubit types on the same chip over a distance that is several orders of magnitude longer than the physical size of the spin qubit. We realize such a link with a frequency-tunable high impedance SQUID array resonator. The spin qubit is a resonant exchange qubit hosted in a GaAs triple quantum dot. It can be operated at zero magnetic field, allowing it to coexist with superconducting qubits on the same chip. We spectroscopically observe coherent interaction between the resonant exchange qubit and a transmon qubit in both resonant and dispersive regimes, where the interaction is mediated either by real or virtual resonator photons.

4.
Nat Commun ; 10(1): 3915, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477720

RESUMO

Quantum Hall edge channels offer an efficient and controllable platform to study quantum transport in one dimension. Such channels are a prospective tool for the efficient transfer of quantum information at the nanoscale, and play a vital role in exposing intriguing physics. Electric current along the edge carries energy and heat leading to inelastic scattering, which may impede coherent transport. Several experiments attempting to probe the concomitant energy redistribution along the edge reported energy loss via unknown mechanisms of inelastic scattering. Here we employ quantum dots to inject and extract electrons at specific energies, to spectrally analyse inelastic scattering inside quantum Hall edge channels. We show that the missing energy puzzle could be untangled by incorporating non-local Auger-like processes, in which energy is redistributed between spatially separate parts of the sample. Our theoretical analysis, accounting for the experimental results, challenges common-wisdom analyses which ignore such non-local decay channels.

5.
Phys Rev Lett ; 123(2): 026803, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386494

RESUMO

We report ground- and excited-state transport through an electrostatically defined few-hole quantum dot in bilayer graphene in both parallel and perpendicular applied magnetic fields. A remarkably clear level scheme for the two-particle spectra is found by analyzing finite bias spectroscopy data within a two-particle model including spin and valley degrees of freedom. We identify the two-hole ground state to be a spin-triplet and valley-singlet state. This spin alignment can be seen as Hund's rule for a valley-degenerate system, which is fundamentally different from quantum dots in carbon nanotubes, where the two-particle ground state is a spin-singlet state. The spin-singlet excited states are found to be valley-triplet states by tilting the magnetic field with respect to the sample plane. We quantify the exchange energy to be 0.35 meV and measure a valley and spin g factor of 36 and 2, respectively.

6.
Nat Commun ; 10(1): 3011, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285437

RESUMO

Semiconductor qubits rely on the control of charge and spin degrees of freedom of electrons or holes confined in quantum dots. They constitute a promising approach to quantum information processing, complementary to superconducting qubits. Here, we demonstrate coherent coupling between a superconducting transmon qubit and a semiconductor double quantum dot (DQD) charge qubit mediated by virtual microwave photon excitations in a tunable high-impedance SQUID array resonator acting as a quantum bus. The transmon-charge qubit coherent coupling rate (~21 MHz) exceeds the linewidth of both the transmon (~0.8 MHz) and the DQD charge qubit (~2.7 MHz). By tuning the qubits into resonance for a controlled amount of time, we observe coherent oscillations between the constituents of this hybrid quantum system. These results enable a new class of experiments exploring the use of two-qubit interactions mediated by microwave photons to create entangled states between semiconductor and superconducting qubits.

7.
Phys Rev Lett ; 122(21): 213601, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283346

RESUMO

We investigate spin states of few electrons in a double quantum dot by coupling them to a magnetic field resilient NbTiN microwave resonator. The electric field of the resonator couples to the electric dipole moment of the charge states in the double dot. For a two-electron state the spin-triplet state has a vanishing electric dipole moment and can therefore be distinguished from the spin-singlet state. This way the charge dipole sensitivity of the resonator response is converted to a spin selectivity. We thereby investigate Pauli spin blockade known from transport experiments at finite source-drain bias. In addition we find an unconventional spin-blockade triggered by the absorption of resonator photons.

8.
Phys Rev Lett ; 122(20): 206802, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31172788

RESUMO

Developing fast and accurate control and readout techniques is an important challenge in quantum information processing with semiconductor qubits. Here, we study the dynamics and the coherence properties of a GaAs/AlGaAs double quantum dot charge qubit strongly coupled to a frequency-tunable high-impedance resonator. We drive qubit transitions with synthesized microwave pulses and perform qubit readout through the state-dependent frequency shift imparted by the qubit on the dispersively coupled resonator. We perform Rabi oscillation, Ramsey fringe, energy relaxation, and Hahn-echo measurements and find significantly reduced decoherence rates down to γ_{2}/2π∼3 MHz corresponding to coherence times of up to T_{2}∼50 ns for charge states in gate-defined quantum dot qubits. We realize Rabi π pulses of width down to σ∼0.25 ns.

9.
Phys Rev Lett ; 121(4): 043603, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30095954

RESUMO

We experimentally investigate a strongly driven GaAs double quantum dot charge qubit weakly coupled to a superconducting microwave resonator. The Floquet states emerging from strong driving are probed by tracing the qubit-resonator resonance condition. In this way, we probe the resonance of a qubit that is driven in an adiabatic, a nonadiabatic, or an intermediate rate, showing distinct quantum features of multiphoton processes and a fringe pattern similar to Landau-Zener-Stückelberg interference. Our resonant detection scheme enables the investigation of novel features when the drive frequency is comparable to the resonator frequency. Models based on the adiabatic approximation, rotating wave approximation, and Floquet theory explain our experimental observations.

10.
Nature ; 560(7717): 179-184, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046114

RESUMO

Electron spins hold great promise for quantum computation because of their long coherence times. Long-distance coherent coupling of spins is a crucial step towards quantum information processing with spin qubits. One approach to realizing interactions between distant spin qubits is to use photons as carriers of quantum information. Here we demonstrate strong coupling between single microwave photons in a niobium titanium nitride high-impedance resonator and a three-electron spin qubit (also known as a resonant exchange qubit) in a gallium arsenide device consisting of three quantum dots. We observe the vacuum Rabi mode splitting of the resonance of the resonator, which is a signature of strong coupling; specifically, we observe a coherent coupling strength of about 31 megahertz and a qubit decoherence rate of about 20 megahertz. We can tune the decoherence electrostatically to obtain a minimal decoherence rate of around 10 megahertz for a coupling strength of around 23 megahertz. We directly measure the dependence of the qubit-photon coupling strength on the tunable electric dipole moment of the qubit using the 'AC Stark' effect. Our demonstration of strong qubit-photon coupling for a three-electron spin qubit is an important step towards coherent long-distance coupling of spin qubits.

11.
Phys Rev Lett ; 119(17): 176807, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29219432

RESUMO

The spin-flip tunneling rates are measured in GaAs-based double quantum dots by time-resolved charge detection. Such processes occur in the Pauli spin blockade regime with two electrons occupying the double quantum dot. Ways are presented for tuning the spin-flip tunneling rate, which on the one hand gives access to measuring the Rashba and Dresselhaus spin-orbit coefficients. On the other hand, they make it possible to turn on and off the effect of spin-orbit interaction with a high on/off ratio. The tuning is accomplished by choosing the alignment of the tunneling direction with respect to the crystallographic axes, as well as by choosing the orientation of the external magnetic field with respect to the spin-orbit magnetic field. Spin lifetimes of 10 s are achieved at a tunneling rate close to 1 kHz.

12.
Rev Sci Instrum ; 88(8): 085106, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28863670

RESUMO

A tabletop low-noise differential amplifier with a bandwidth of 100 kHz is presented. Low voltage drifts of the order of 100 nV/day are reached by thermally stabilizing relevant amplifier components. The input leakage current is below 100 fA. Input-stage errors are reduced by extensive circuitry. Voltage noise, current noise, input capacitance, and input current are extraordinarily low. The input resistance is larger than 1 TΩ. The amplifiers were tested with and deployed for electrical transport measurements of quantum devices at cryogenic temperatures.

13.
Phys Rev Lett ; 117(20): 206803, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27886466

RESUMO

We demonstrate an experimental method for measuring quantum state degeneracies in bound state energy spectra. The technique is based on the general principle of detailed balance and the ability to perform precise and efficient measurements of energy-dependent tunneling-in and -out rates from a reservoir. The method is realized using a GaAs/AlGaAs quantum dot allowing for the detection of time-resolved single-electron tunneling with a precision enhanced by a feedback control. It is thoroughly tested by tuning orbital and spin degeneracies with electric and magnetic fields. The technique also lends itself to studying the connection between the ground-state degeneracy and the lifetime of the excited states.

14.
Phys Rev Lett ; 116(13): 136803, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27081997

RESUMO

We utilize electron counting techniques to distinguish a spin-conserving fast tunneling process and a slower process involving spin flips in AlGaAs/GaAs-based double quantum dots. By studying the dependence of the rates on the interdot tunnel coupling of the two dots, we find that as many as 4% of the tunneling events occur with a spin flip related to spin-orbit coupling in GaAs. Our measurement has a fidelity of 99% in terms of resolving whether a tunneling event occurred with a spin flip or not.

15.
Phys Rev Lett ; 115(16): 166603, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26550890

RESUMO

Quantum engineering requires controllable artificial systems with quantum coherence exceeding the device size and operation time. This can be achieved with geometrically confined low-dimensional electronic structures embedded within ultraclean materials, with prominent examples being artificial atoms (quantum dots) and quantum corrals (electronic cavities). Combining the two structures, we implement a mesoscopic coupled dot-cavity system in a high-mobility two-dimensional electron gas, and obtain an extended spin-singlet state in the regime of strong dot-cavity coupling. Engineering such extended quantum states presents a viable route for nonlocal spin coupling that is applicable for quantum information processing.

16.
Nano Lett ; 15(12): 7994-9, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26569040

RESUMO

We demonstrate a scanning gate grid measurement technique consisting in measuring the conductance of a quantum point contact (QPC) as a function of gate voltage at each tip position. Unlike conventional scanning gate experiments, it allows investigating QPC conductance plateaus affected by the tip at these positions. We compensate the capacitive coupling of the tip to the QPC and discover that interference fringes coexist with distorted QPC plateaus. We spatially resolve the mode structure for each plateau.

17.
Phys Rev Lett ; 115(4): 046802, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26252704

RESUMO

We explore the microwave radiation emitted from a biased double quantum dot due to the inelastic tunneling of single charges. Radiation is detected over a broad range of detuning configurations between the dot energy levels, with pronounced maxima occurring in resonance with a capacitively coupled transmission line resonator. The power emitted for forward and reverse resonant detuning is found to be in good agreement with a rate equation model, which considers the hybridization of the individual dot charge states.

18.
Nano Lett ; 15(9): 6003-8, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26280388

RESUMO

We present an electronic transport experiment in graphene where both classical and quantum mechanical charge detector back-action on a quantum dot are investigated. The device consists of two stacked graphene quantum dots separated by a thin layer of boron nitride. This device is fabricated by van der Waals stacking and is equipped with separate source and drain contacts to both dots. By applying a finite bias to one quantum dot, a current is induced in the other unbiased dot. We present an explanation of the observed measurement-induced current based on strong capacitive coupling and energy dependent tunneling barriers, breaking the spatial symmetry in the unbiased system. This is a special feature of graphene-based quantum devices. The experimental observation of transport in classically forbidden regimes is understood by considering higher-order quantum mechanical back-action mechanisms.

19.
Rev Sci Instrum ; 84(8): 083902, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24007074

RESUMO

A detailed analysis of the tunability of a radio-frequency quantum point contact setup using a C - LCR circuit is presented. We calculate how the series capacitance influences resonance frequency and charge-detector resistance for which matching is achieved as well as the voltage and power delivered to the load. Furthermore, we compute the noise contributions in the system and compare our findings with measurements taken with an etched quantum point contact. While our considerations mostly focus on our specific choice of matching circuit, the discussion of the influence of source-to-load power transfer on the signal-to-noise ratio is valid generally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA