Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(31): 77165-77180, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37249783

RESUMO

In this research study, waste fly ash (WFA) underwent acid activation and subsequent amine functionalization using ammonia solution. This treatment improves the porosity, thermal tendency and crystallinity of WFA. Modified WFA was tested under different experimental conditions to treat the wastewater consisting of different concentrations of cationic (methylene blue and rhodamine 6G) and anionic (methyl orange) dyes. As an individual, methylene blue (MB) and rhodamine 6G (Rh) showed ~ 100% and ~ 82% removal efficiencies respectively in an alkaline medium while methyl orange (MO) exhibited only ~ 20% adsorption in the same medium. An antagonistic effect was observed in adsorption when wastewater contains both cationic dyes whereas the combination of cationic and anionic dyes in solution manifested a synergistic effect. For all individual and binary dye combinations, there is a close agreement in observed and calculated uptakes when the data was fitted to the fractional order kinetic rate equation. The adsorption of all dyes is spontaneous and endothermic in nature except for MB/MO combination where the process is exothermic in nature. 24.93 mg/g, 24.83 mg/g, and 14.95 mg/g monolayer uptake capacities of MB, Rh, and MO were found respectively from isothermal analysis of single dye adsorption data. Further, extended sips model gave higher correlation coefficient (R2 = 0.99) and addressed the failed assumptions of both the Langmuir and Freundlich models. Overall, in the experimental results, the modified waste fly ash could act as successful adsorbent to treat dye bearing wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Corantes , Cinza de Carvão , Azul de Metileno , Cinética , Adsorção , Cátions
2.
Sci Total Environ ; 880: 163299, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030386

RESUMO

Layered double hydroxides (LDHs) have shown exciting applications in water treatment because of their unique physicochemical properties, which include high surface areas, tunable chemical composition, large interlayer spaces, exchangeable content in interlayer galleries, and ease of modification with other materials. Interestingly, their surface, as well as the intercalated materials within the layers, play a role in the adsorption of the contaminants. The surface area of LDH materials can be further enhanced by calcination. The calcined LDHs can reattain their structural features upon hydration through the "memory effect" and may uptake anionic species within their interlayer galleries. Besides, LDH layers are positively charged within the aqueous media and can interact with specific contaminants through electrostatic interactions. LDHs can be synthesized using various methods, allowing the incorporation of other materials within the layers or forming composites that can selectively capture target pollutants. They have been combined with magnetic nanoparticles to improve their separation after adsorption and enhance adsorptive features in many cases. LDHs are relatively greener materials because they are mostly composed of inorganic salts. Magnetic LDH-based composites have been widely employed for the purification of water contaminated with heavy metals, dyes, anions, organics, pharmaceuticals, and oil. Such materials have shown interesting applications for removing contaminants from real matrices. Moreover, they can be easily regenerated and used for several adsorption-desorption cycles. Magnetic LDHs can be regarded as greener and sustainable because of several green aspects in their synthesis and reusability. We have critically reviewed their synthesis, applications, factors affecting their adsorption performance, and related mechanisms in this review. In the end, some challenges and perspectives are also discussed.

3.
Sci Total Environ ; 860: 160322, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36414071

RESUMO

Waste generated by healthcare facilities during the COVID-19 pandemic has become a new source of pollution, particularly with the widespread use of single-use personal protective equipment (PPE). Releasing microplastics (MPs) and microfibers (MFs) from discarded PPE becomes an emerging threat to environmental sustainability. MPs/MFs have recently been reported in a variety of aquatic and terrestrial ecosystems, including water, deep-sea sediments, air, and soil. As COVID-19 spreads, the use of plastic-made PPE in healthcare facilities has increased significantly worldwide, resulting in massive amounts of plastic waste entering the terrestrial and marine environments. High loads of MPs/MFs emitted into the environment due to excessive PPE consumption are easily consumed by aquatic organisms, disrupting the food chain, and potentially causing chronic health problems in humans. Thus, proper management of PPE waste is critical for ensuring a post-COVID sustainable environment, which has recently attracted the attention of the scientific community. The current study aims to review the global consumption and sustainable management of discarded PPE in the context of COVID-19. The severe impacts of PPE-emitted MPs/MFs on human health and other environmental segments are briefly addressed. Despite extensive research progress in the area, many questions about MP/MF contamination in the context of COVID-19 remain unanswered. Therefore, in response to the post-COVID environmental remediation concerns, future research directions and recommendations are highlighted considering the current MP/MF research progress from COVID-related PPE waste.


Assuntos
COVID-19 , Humanos , Plásticos , Microplásticos , Ecossistema , Pandemias , Equipamento de Proteção Individual
4.
Chemosphere ; 308(Pt 2): 136329, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36087722

RESUMO

Organic solvent nanofiltration (OSN) is an emerging technology for the separation of organic solvents that are relevant to the petrochemical, pharmaceutical, food and fine chemical industries. The separation performance of OSN membranes has continued to push the boundary up through advanced membrane fabrication techniques and novel materials for fabricating the membranes. Despite the many advantages, OSN membranes still face such challenges as low solvent permeability and durability in harsh organic solvent conditions. To overcome these limitations, attempts have been made to incorporate nanomaterial fillers into OSN membranes to improve their overall performance. This review analyzes the potential and use of nanomaterials for OSN membranes, including covalent organic frameworks (COFs), metal-organic frameworks (MOFs), metal oxides (MOs) and carbon-based materials (CBMs). Recent advances in the state-of-the-art nano-based OSN membranes, in the form of thin-film nanocomposite (TFN) membranes and mixed matrix membranes (MMMs), are reviewed. Moreover, the separation mechanisms of OSN with nano-based membranes are discussed. The challenges faced by these OSN membranes are also elaborated, and recommendations for further research in this field are provided.


Assuntos
Estruturas Metalorgânicas , Nanocompostos , Carbono , Filtração/métodos , Óxidos , Preparações Farmacêuticas , Solventes
5.
J Environ Manage ; 321: 115981, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36029630

RESUMO

The presence of hazardous dyes in wastewater cause disastrous effects on living organisms and the environment. The conventional technologies for the remediation of dyes from water have several bottlenecks such as high cost and complex operation. This review aims to present a comprehensive outlook of various bio-sorbents that are identified and successfully employed for the removal of dyes from aqueous environments. The effect of physicochemical characteristics of adsorbents such as surface functional groups, pore size distribution and surface areas are critically evaluated. The adsorption potential at different experimental conditions of diverse bio-sorbents has been also explored and the influence of certain key parameters like solution pH, temperature, concentration of dyes, dosage of bio-sorbent and agitation speed is carefully evaluated. The mechanism of dyes adsorption, regeneration potential of the employed bio-sorbents and their comparison with other commercial adsorbents are discussed. The cost comparison of different adsorbents and key technological challenges are highlighted followed by the recommendations for future research.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Corantes/química , Águas Residuárias/química , Água , Poluentes Químicos da Água/química
6.
Chemosphere ; 307(Pt 3): 135953, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35964727

RESUMO

In the present work, the adsorptive removal of chromium (Cr) from water by carbide-derived carbon (CDC) was investigated. The morphology and structure of the CDC were characterized by using FTIR, SEM, TEM, XRD, and N2 adsorption-desorption measurements. The effect of adsorption parameters including contact time, initial Cr concentration, temperature, initial solution pH, and CDC dosage was examined on the removal of Cr ions. The kinetic analysis revealed that the experimental data on the removal of Cr ions on CDC is well correlated with the pseudo-second order kinetic model (with R2 > 0.999), while the equilibrium data were fitted by the Redlich-Peterson isotherm model (with R2 > 0.992). The Langmuir and Sips models were also in good compliance with the equilibrium data, indicating a monolayer coverage of Cr ions onto the CDC surface with some heterogeneous active adsorption sites. The CDC revealed a notable Langmuir adsorption capacity of 159.1 mg/g for Cr ions at pH 6 and room temperature. The thermodynamic analysis illustrated that the Cr ions elimination by CDC is a feasible adsorption process and endothermic in nature. After five adsorption/desorption cycles, less than 18% reduction in the adsorption capacity was obtained indicating the stability and reusability of the CDC. Moreover, the CDC demonstrated an excellent potential in removing the Cr ions from real brackish water. According to the adsorption data, both physical and chemical adsorption processes occurred, and the adsorption was mainly controlled by electrostatic interactions with a possible reduction of hexavalent Cr to trivalent Cr at acidic conditions.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carbono/química , Cromo/análise , Concentração de Íons de Hidrogênio , Íons , Cinética , Compostos Orgânicos , Água , Poluentes Químicos da Água/análise
7.
Chemosphere ; 307(Pt 4): 136054, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36007742

RESUMO

In this work, engineered biochar decorated layered double hydroxides and cellulose nanocrystals (B-CuFe-CNC) biocomposites were synthesized by the facile ultrasonicated-co-precipitation technique. The biocomposite was investigated for purification of Eriochrome Black T (EBT) dye from water. The characterization results showed that the presence of CNC in biochar-layered double hydroxides resulted in a two-dimensional rod-like structure with excellent crystallinity, improved surface functionalities, and provides an attractive platform for the enhanced adsorption of azo anionic dye molecules. The adsorption system was appropriately demonstrated by the BBD-RSM (R2 > 0.994). The biocomposite exhibited higher EBT adsorption in the acidic pH range (2-5) due to strong electrostatic and chemical interactions. The kinetic and isotherm results were well demonstrated by pseudo-second order, Freundlich, and Redlich Peterson models. The maximum adsorption capacity of biocomposite was 876.2 mg/g achieved within 45 min. The spectroscopic analyses imply that the high removal of EBT by biocomposite is mainly governed by electrostatic attraction, hydrogen bonding, and chemical/metal complexation mechanisms. The biocomposite maintained high EBT removal after six successive adsorption cycles and excellent dye adsorption in the different water matrices. The results suggest that tailoring biochar properties with layered double hydroxide and CNC is a promising way for the enhanced removal of dye contaminants from wastewater.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Adsorção , Compostos Azo , Celulose , Carvão Vegetal , Hidróxidos/química , Cinética , Águas Residuárias/química , Água/análise , Poluentes Químicos da Água/análise
8.
Chemosphere ; 303(Pt 3): 135234, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35679979

RESUMO

MXenes have emerged as wonderful materials that earned enormous attention in the last decade for applications in various fields. The potential of MXenes in the development of novel membranes has been explored recently by many researchers. This review critically assessed the recent advances in applications of MXene-based materials for the development of novel membranes. The synthesis routes of the MXene-based membranes are discussed, and the applications of developed membranes in water treatment and desalination are elaborated in detail. MXene-based membranes have demonstrated excellent potential in water treatment and desalination for the removal of dyes, metal ions, and salts from water. These membranes have unveiled exceptional antifouling potential and were proven to be a good choice to be employed in oil/water (O/W) separation. Besides impressive progress, numerous barriers restrict the practical applications of these membranes. The challenges related to synthesis routes of MXenes and MXene-based membranes, their stability and reusability potential, and the development of membranes on large scale are highlighted. Finally, recommendations for future work are suggested to overcome these limitations in future.


Assuntos
Purificação da Água , Membranas Artificiais
9.
Chemosphere ; 303(Pt 3): 135211, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35660049

RESUMO

Thin-film composite (TFC) nanofiltration (NF) and reverse osmosis (RO) membranes have been widely used to remove pharmaceutically active compounds (PhACs) from water and wastewater. However, limited information is available to present the rejection of neutral PhACs under complex water matrices. In this study, we used acetaminophen (AAP) as a representative neutral pollutant to study the effects of feedwater matrices on the rejection of neutral PhACs by NF and RO membranes. The results showed that the permeation of solutes and water through NF and RO membranes followed the classical solution-diffusion model. The corresponding permeability coefficients of AAP for the RO membrane showed good consistency, with average values ranging between (6.19-7.56) × 10-6 µm s-1 in fresh and brackish feedwater. Meanwhile, the NF membrane exhibited stable AAP and NaCl fluxes as the applied pressure increased from 4.8 to 7.6 bar, suggesting an insignificant influence of convection on solute transport. In addition, a 10-fold increase in NaCl concentration reduced the average AAP permeability coefficient of the NF membrane by 57% (i.e. from 2.8 × 10-5 m s-1 to 1.2 × 10-5 m s-1), highlighting the relevance of co-existing ions to AAP transport. Furthermore, organic fouling resulted in enhanced AAP rejection by both NF and RO membranes at neutral pH level and medium applied pressure (i.e. 5.8 bar). Overall, this study provided important insights into the separation mechanism of TFC membranes for neutral PhACs, as well as the complex effects of the water matrix on the solute permeation processes.


Assuntos
Purificação da Água , Filtração/métodos , Membranas Artificiais , Osmose , Cloreto de Sódio , Água/química , Purificação da Água/métodos
10.
Environ Res ; 209: 112861, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35143802

RESUMO

In this research work, a novel hybrid composite consisting of biochar (B), layered double hydroxide (CuFe) and chitosan (CS) (B-CuFe-CS) was produced using an ultrasonication-assisted co-precipitation method. The resultant composite was employed for adsorptive removal of Eriochrome black T (EBT) from water. Physicochemical characterization indicated that the B-CuFe-CS containing 10 wt % CS exhibited a heterogeneous structure with better crystallographic and textural characteristics. The B-CuFe-CS with abundant surface functionalities (-CO, -C-O, -OH, -NO3, and MMO), facilitates faster and enhanced removal of the EBT. The kinetic results showed better fitting to the pseudo-second order model, and equilibrium was achieved within 30 min. Equilibrium data was well explained by Langmuir and Redlich Peterson isotherm models (R2 > 0.98), indicating the EBT removal onto B-CuFe-CS followed monolayer adsorption. The maximum adsorption capacity was 806.4 mg/g, which was higher than pristine B-CuFe (476.19 mg/g) and many other adsorbents. The spectroscopic analysis (FTIR and XPS) and experimental results suggested that EBT adsorption is mainly governed by electrostatic, chemical and anion-exchange interactions. It is evident from these results that coupling B-CuFe composite with bio-filler (chitosan) resulted in an efficient bio-adsorbent to effectively purify dye-contaminated water streams.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Compostos Azo , Carvão Vegetal , Quitosana/química , Concentração de Íons de Hidrogênio , Hidróxidos/química , Cinética , Água , Poluentes Químicos da Água/análise
11.
Chem Rec ; 22(7): e202100312, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35102677

RESUMO

Starch-based adsorbents have demonstrated excellent potential for the removal of various noxious dyes from wastewater. This review critically evaluates the recent progress in applications of starch-based adsorbents for the removal of dyes from water. The synthesis methods of starch-based composites and their effects on physicochemical characteristics of produced adsorbents are discussed. The removal of various dyes by starch-based adsorbents are described in detail, with emphasis on the effect of key parameters, adsorption mechanism and their reusability potential. The key challenges related to the synthesis and applications of starch-based adsorbents in water purification are highlighted. Based on the research gaps, recommendations for future research are made. The evaluation of starch-based adsorbents would contribute to the development of sustainable water treatment options in near future.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Corantes , Amido , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos
12.
Chemosphere ; 289: 133196, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34890621

RESUMO

In recent years, considerable attention has been paid to the beneficial utilization of sewage sludge to reduce the risks associated with sludge disposal. Besides other applications of sludge, biochar produced from sludge has also been employed for the elimination of various pollutants from water. This review critically evaluates the recent progress in applications of sludge-based biochar for the adsorption of pharmaceuticals from water. The synthesis techniques of biochar production from sludge and their effects on physicochemical characteristics of produced biochar are discussed. The removal of various pharmaceuticals by sludge-based biochar are described in detail, with the emphasis on the adsorption mechanism and their reusability potential. It is evident from the literature that sludge-based biochar has demonstrated excellent potential for the adsorption of numerous pharmaceuticals from the aqueous phase. The major hurdles and issues related to the synthesis of sludge-based biochar and applications are highlighted, with reference to the adsorption of pharmaceuticals. Finally, a roadmap is suggested along with future research directions to ensure the sustainable production of biochar from sludge and its applications in water treatment.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Esgotos , Poluentes Químicos da Água/análise
13.
Molecules ; 26(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299541

RESUMO

A sewage sludge-based activated carbon (SBAC) intercalated MgAlFe ternary layered double hydroxide (SBAC-MgAlFe-LDH) composite was synthesized via the coprecipitation method. The adsorptive performance of the composite for phenol uptake from the aqueous phase was evaluated via the response surface methodology (RSM) modeling technique. The SBAC-MgAlFe-LDH phenol uptake capacity data were well-fitted to reduced RSM cubic model (R2 = 0.995, R2-adjusted = 0.993, R2-predicted = 0.959 and p-values < 0.05). The optimum phenol adsorption onto the SBAC-MgAlFe-LDH was achieved at 35 °C, 125 mg/L phenol, and pH 6. Under the optimal phenol uptake conditions, pseudo-first-order and Avrami fractional-order models provided a better representation of the phenol uptake kinetic data, while the equilibrium data models' fitting follows the order; Liu > Langmuir > Redlich-Peterson > Freundlich > Temkin. The phenol uptake mechanism was endothermic in nature and predominantly via a physisorption process (ΔG° = -5.33 to -5.77 kJ/mol) with the involvement of π-π interactions between the phenol molecules and the functionalities on the SBAC-LDH surface. The maximum uptake capacity (216.76 mg/g) of SBAC-MgAlFe-LDH was much higher than many other SBAC-based adsorbents. The improved uptake capacity of SBAC-LDH was attributed to the effective synergetic influence of SBAC-MgAlFe-LDH, which yielded abundant functionalized surface groups that favored higher aqueous phase uptake of phenol molecules. This study showcases the potential of SBAC-MgAlFe-LDH as an effective adsorbent material for remediation of phenolic wastewater.

14.
Sci Total Environ ; 780: 146585, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33774302

RESUMO

The desalination of seawater is perceived as one of the most viable processes to fulfill the mounting demand for freshwater. Despite enormous economic, social, and health benefits offered by desalination, there are several concerns regarding its prospective environmental impacts (EIs). The objective of this work is to critically evaluate the potential EIs of seawater desalination, and assess the prospects of greener desalination. The EIs of desalination on marine environment, land, groundwater, and air quality was systematically reviewed. An attempt has been made to analyze the actuality of these so-called impacts with reference to evidence from real desalination plants. The mitigative measures to counterbalance these unfavorable impacts are critically appraised. Furthermore, the brine management technologies for the disposal of reject stream, the recovery of precious materials and water, and the production of useful chemicals are also reviewed. Current challenges to minimize the adverse impacts of desalination and prospects of sustainable greener desalination to overwhelm global water scarcities are also discussed. The current desalination approaches have moderate and minor negative EIs. However, with proper mitigation and utilization of modern technologies, these impacts can be lessened. Furthermore, by employing various modern techniques, reject brine can be utilized for several useful applications while reducing its adverse impacts simultaneously. Recent advancements in desalination technologies have also offered many alternative approaches that provide a roadmap towards greener desalination. This review article will be beneficial for all the stakeholders in the desalination industry.

15.
Chemosphere ; 263: 127970, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32835978

RESUMO

Analogous to the carbon family, boron nitride (BN)-based materials have gained considerable attention in recent times for applications in various fields. Owing to their extraordinary characteristics, i.e., high surface area, low density, superior thermal stability, mechanical strength, and conductivity, excellent corrosion, and oxidation resistance, the BN nanomaterials have been explored in water remediation. This article critically evaluates the latest development in applications of BN-based materials in water purification with focus on adsorption, synthesis of novel membranes and photocatalytic degradation of pollutants. The adsorption of various noxious pollutants, i.e., dyes, organic compounds, antibiotics, and heavy metals from aqueous medium BN-based materials are described in detail by illustrating the adsorption mechanism and regeneration potential. The major hurdles and opportunities related to the synthesis and water purification applications of BN-based materials are underscored. Finally, a roadmap is suggested for future research to assure the effective applications of BN-based materials in water purification. This review is beneficial in understanding the current status of these unique materials in water purification and accelerating the research focusing their future water remediation applications.


Assuntos
Compostos de Boro/química , Purificação da Água/métodos , Adsorção , Antibacterianos , Corantes , Nanoestruturas , Água
16.
Bioresour Technol ; 319: 124128, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32979597

RESUMO

Biochar/layered double hydroxide (LDH) composites have gained considerable attention in recent times as low-cost sustainable materials for applications in water treatment. This paper critically evaluates the latest development in applications of biochar/LDH composites in water treatment with an emphasis on adsorption and catalytic degradation of various pollutants. The adsorption of various noxious contaminants, i.e., heavy metals, dyes, anions, and pharmaceuticals onto biochar/LDH composites are described in detail by elaborating the adsorption mechanism and regeneration ability. The synergistic effect of LDH with biochar exhibited significant improvement in specific surface area, surface functional groups, structure heterogeneity, stability, and adsorption characteristics of the resulting biochar/LDH composites. The major hurdles and challenges associated with the synthesis and applications of biochar/LDH composites in water remediation are emphasized. Finally, a roadmap is suggested for future research to assure the effective applications of biochar/LDH composites in water purification.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Hidróxidos , Poluentes Químicos da Água/análise
17.
Anal Chim Acta ; 1141: 246-262, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33248658

RESUMO

Polycyclic aromatic hydrocarbons are hazardous environmental pollutants that possess mutagenic and carcinogenic properties. Generally, the concentrations of PAHs in environmental water samples are very low, and it is challenging to detect such levels directly by the analytical instrumentation. Thus, the extraction of PAHs using suitable extraction methodology is required for sample cleanup and analyte enrichment. Dispersive solid-phase extraction has several advantages over conventional approaches for the extraction of PAHs from environmental water samples. In this article, we critically evaluate the role of different nano and micro sorbent materials employed in the extraction of PAHs. Carbon-based nanomaterials, metal-organic frameworks, polymeric nanocomposites, ionic-liquid based composites, and silica-based materials are explicitly covered. This review also provides insight on functional components of all types of sorbents and their way of interaction with PAHs. The factors affecting the dispersive (micro) solid phase extraction of PAHs such as the design of the sorbent, the ratio of functional material to magnetic core, sample volume, amount of sorbent, extraction and desorption times, desorption solvent and its volume, salt addition, and sample pH are critically appraised. Finally, a brief account on the accomplishments, limitations, and challenges associated with such methods is provided.

18.
J Water Process Eng ; 39: 101735, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38620601

RESUMO

The outbreak of COVID-19 has posed enormous health, social, environmental and economic challenges to the entire human population. Nevertheless, it provides an opportunity for extensive research in various fields to evaluate the fate of the crisis and combat it. The apparent need for imperative research in the biological and medical field is the focus of researchers and scientists worldwide. However, there are some new challenges and research opportunities in the field of water and wastewater treatment concerning the novel coronavirus 2 (SARS-CoV-2). This article briefly summarizes the latest literature reporting the presence of SARS-CoV-2 in water and wastewater/sewage. Furthermore, it highlights the challenges, potential opportunities and research directions in the water and wastewater treatment field. Some of the significant challenges and research opportunities are the development of standard techniques for the detection and quantification of SARS-CoV-2 in the water phase, assessment of favorable environments for its survival and decay in water; and development of effective strategies for elimination of the novel virus from water. Advancement in research in this domain will help to protect the environment, human health, and managing this type of pandemic in the future.

19.
Bull Environ Contam Toxicol ; 105(4): 546-552, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32870331

RESUMO

The heavy metals were studied in water, sediments, algae, and various tissues of Glyptosternon reticulatum and Cyprinus carpio from River Swat, Pakistan, using flame atomic absorption spectrophotometer. The Zn, Cu, Pb and Ni were higher in water at sewage site compared to upstream and downstream sites. In sediments, the Ni and Cd were not detected whereas Cu, Pb and Zn were higher at downstream followed by sewage and upstream sites. The Ni and Zn in algae were higher at upstream and sewage sites compared to downstream site whereas Pb and Cd were higher at upstream site compared to sewage and downstream sites and Cu was found same at all the three sites. The heavy metals (Zn > Cu > Pb and Ni) in tissues (liver > gills > skin > muscles) of G. reticulatum was higher than in C. carpio. This study recommends the proper monitoring of River Swat in order to save its water and inhabitant aquatic life.


Assuntos
Carpas/metabolismo , Peixes-Gato/metabolismo , Sedimentos Geológicos/análise , Metais Pesados/metabolismo , Rios/química , Spirogyra/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Metais Pesados/análise , Paquistão , Especificidade da Espécie , Distribuição Tecidual , Poluentes Químicos da Água/análise
20.
Nanomicro Lett ; 12(1): 72, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-34138292

RESUMO

MXenes, novel 2D transition metal carbides, have emerged as wonderful nanomaterials and a superlative contestant for a host of applications. The tremendous characteristics of MXenes, i.e., high surface area, high metallic conductivity, ease of functionalization, biocompatibility, activated metallic hydroxide sites, and hydrophilicity, make them the best aspirant for applications in energy storage, catalysis, sensors, electronics, and environmental remediation. Due to their exceptional physicochemical properties and multifarious chemical compositions, MXenes have gained considerable attention for applications in water treatment and desalination in recent times. It is vital to understand the current status of MXene applications in desalination in order to define the roadmap for the development of MXene-based materials and endorse their practical applications in the future. This paper critically reviews the recent advancement in the synthesis of MXenes and MXene-based composites for applications in desalination. The desalination potential of MXenes is portrayed in detail with a focus on ion-sieving membranes, capacitive deionization, and solar desalination. The ion removal mechanism and regeneration ability of MXenes are also summarized to get insight into the process. The key challenges and issues associated with the synthesis and applications of MXenes and MXene-based composites in desalination are highlighted. Lastly, research directions are provided to guarantee the synthesis and applications of MXenes in a more effective way. This review may provide an insight into the applications of MXenes for water desalination in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA