Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169060, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38061642

RESUMO

Historically, forest thinning in Japan was conducted to obtain high-quality timber from plantations. Today, in contrast, thinning is also motivated by forest water balance and climate change considerations. It is in this context that the present study examines the effects of thinning on the ecophysiological responses of remaining trees, which are inadequately understood, especially in relation to changes in the magnitude and duration of transpiration. Sap flux densities were measured in both outer and inner sapwood to obtain stand-scale transpiration for two years in the pre-thinning state and three years post-thinning. The effects of thinning on transpiration were quantitatively evaluated based on canopy conductance models. The larger increases in outer sap flux density were found in the first year after the treatment, while those in inner sap flux density were detected in the second and third years. The remaining trees required a few of years to adjust to improved light conditions of the lower crown, resulting in a delayed response of inner sap flux density. As a result of this lag, transpiration was reduced to 71 % of the pre-thinning condition in the first year, but transpiration recovered to the pre-thinning levels in the second and third years due to compensating contributions from inner sap flow. In terms of more accurately chronicling the thinning effect, the distribution of sap flux density with respect to its radial pattern, is necessary. Such measurements are key to more comprehensively examining the ecophysiological response of forest plantations to thinning and, ultimately, its effect on the forest water balance.


Assuntos
Cryptomeria , Cryptomeria/fisiologia , Transpiração Vegetal/fisiologia , Florestas , Árvores/fisiologia , Água
2.
Anal Chem ; 95(40): 15078-15085, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37715701

RESUMO

Quantitative analysis of binary mixtures of tris(2-phenylpyridinato)iridium(III) (Ir(ppy)3) and tris(8-hydroxyquinolinato)aluminum (Alq3) by using an artificial neural network (ANN) system to mass spectra was attempted based on the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study (TW2 A31) to evaluate matrix-effect correction and to investigate interface determination. Monolayers of binary mixtures having different Ir(ppy)3 ratios (0, 0.25, 0.50, 0.75, and 1.00), and the multilayers containing these mixtures and pure samples were measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS) with different primary ion beams, OrbiSIMS (SIMS with both Orbitrap and ToF mass spectrometers), laser desorption ionization (LDI), desorption/ionization induced by neutral clusters (DINeC), and X-ray photoelectron spectroscopy (XPS). The mass spectra were analyzed using a simple ANN with one hidden layer. The Ir(ppy)3 ratios of the unknown samples and the interfaces of the multilayers were predicted using the simple ANN system, even though the mass spectra of binary mixtures exhibited matrix effects. The Ir(ppy)3 ratios at the interfaces indicated by the simple ANN were consistent with the XPS results and the ToF-SIMS depth profiles. The simple ANN system not only provided quantitative information on unknown samples, but also indicated important mass peaks related to each molecule in the samples without a priori information. The important mass peaks indicated by the simple ANN depended on the ionization process. The simple ANN results of the spectra sets obtained by a softer ionization method, such as LDI and DINeC, suggested large ions such as trimers. From the first step of the investigation to build an ANN model for evaluating mixture samples influenced by matrix effects, it was indicated that the simple ANN method is useful for obtaining candidate mass peaks for identification and for assuming mixture conditions that are helpful for further analysis.

4.
Anal Chem ; 93(9): 4191-4197, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33635050

RESUMO

We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the identification of peptide sample TOF-SIMS spectra by machine learning. More than 1000 time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra of six peptide model samples (one of them was a test sample) were collected using 27 TOF-SIMS instruments from 25 institutes of six countries, the U. S., the U. K., Germany, China, South Korea, and Japan. Because peptides have systematic and simple chemical structures, they were selected as model samples. The intensity of peaks in every TOF-SIMS spectrum was extracted using the same peak list and normalized to the total ion count. The spectra of the test peptide sample were predicted by Random Forest with 20 amino acid labels. The accuracy of the prediction for the test spectra was 0.88. Although the prediction of an unknown peptide was not perfect, it was shown that all of the amino acids in an unknown peptide can be determined by Random Forest prediction and the TOF-SIMS spectra. Moreover, the prediction of peptides, which are included in the training spectra, was almost perfect. Random Forest also suggests specific fragment ions from an amino acid residue Q, whose fragment ions detected by TOF-SIMS have not been reported, in the important features. This study indicated that the analysis using Random Forest, which enables translation of the mathematical relationships to chemical relationships, and the multi labels representing monomer chemical structures, is useful to predict the TOF-SIMS spectra of an unknown peptide.

5.
Proc Natl Acad Sci U S A ; 117(42): 26145-26150, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020284

RESUMO

Irrigated agriculture contributes 40% of total global food production. In the US High Plains, which produces more than 50 million tons per year of grain, as much as 90% of irrigation originates from groundwater resources, including the Ogallala aquifer. In parts of the High Plains, groundwater resources are being depleted so rapidly that they are considered nonrenewable, compromising food security. When groundwater becomes scarce, groundwater withdrawals peak, causing a subsequent peak in crop production. Previous descriptions of finite natural resource depletion have utilized the Hubbert curve. By coupling the dynamics of groundwater pumping, recharge, and crop production, Hubbert-like curves emerge, responding to the linked variations in groundwater pumping and grain production. On a state level, this approach predicted when groundwater withdrawal and grain production peaked and the lag between them. The lags increased with the adoption of efficient irrigation practices and higher recharge rates. Results indicate that, in Texas, withdrawals peaked in 1966, followed by a peak in grain production 9 y later. After better irrigation technologies were adopted, the lag increased to 15 y from 1997 to 2012. In Kansas, where these technologies were employed concurrently with the rise of irrigated grain production, this lag was predicted to be 24 y starting in 1994. In Nebraska, grain production is projected to continue rising through 2050 because of high recharge rates. While Texas and Nebraska had equal irrigated output in 1975, by 2050, it is projected that Nebraska will have almost 10 times the groundwater-based production of Texas.


Assuntos
Irrigação Agrícola/normas , Conservação dos Recursos Hídricos/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Grão Comestível/crescimento & desenvolvimento , Água Subterrânea/análise , Modelos Teóricos , Abastecimento de Água/normas , Recursos Hídricos/provisão & distribuição
6.
Rapid Commun Mass Spectrom ; 34(7): e8640, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31671216

RESUMO

RATIONALE: Organic light-emitting diode (OLED) products based on display applications have become popular in the past 10 years, and new products are being commercialized with rapid frequency. Despite the many advantages of OLEDs, these devices still have a problem concerning lifetime. To gain an understanding of the degradation process, the authors have investigated the molecular information for deteriorated OLED devices using time-of-flight secondary ion mass spectrometry (TOF-SIMS). METHODS: TOF-SIMS depth profiling is an indispensable method for evaluating OLED devices. However, the depth profiles of OLEDs are generally difficult due to the mass interference among organic compounds, including degradation products. In this study, the tandem mass spectrometry (MS/MS) depth profiling method was used to characterize OLED devices. RESULTS: After degradation, defects comprised of small hydrocarbons were observed. Within the defect area, the diffusion of all OLED compounds was also observed. It is supposed that the source of the small hydrocarbons derives from decomposition of the OLED compounds and/or contaminants at the ITO interface. CONCLUSIONS: The true compound distributions have been determined using MS/MS depth profiling methods. The results suggest that luminance decay is mainly due to the decomposition and diffusion of OLED compounds, and that OLED decomposition may be accelerated by adventitious hydrocarbons present at the ITO surface.

7.
Analyst ; 136(4): 716-23, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-20938503

RESUMO

The nanostructure of the light emissive layer (EL) of polymer light emitting diodes (PLEDs) was investigated using force modulation microscopy (FMM) and scanning time-of-flight secondary ion mass spectrometry (ToF-SIMS) excited with focused Bi(3)(2+) primary beam. Three-dimensional nanostructures were reconstructed from high resolution ToF-SIMS images acquired with different C(60)(+) sputtering times. The observed nanostructure is related to the efficiency of the PLED. In poly(9-vinyl-carbazole) (PVK) based EL, a high processing temperature (60 °C) yielded less nanoscale phase separation than a low processing temperature (30 °C). This nanostructure can be further suppressed by replacing the host polymer with poly[oxy(3-(9H-9-carbazol-9-ilmethyl-2-methyltrimethylene)] (SL74) and poly[3-(carbazol-9-ylmethyl)-3-methyloxetane] (RS12), which have similar chemical structures and energy levels as PVK. The device efficiency increases when the phase separation inside the EL is suppressed. While the spontaneous formation of a bicontinuous nanostructure inside the active layer is known to provide a path for charge carrier transportation and to be the key to highly efficient polymeric solar cells, these nanostructures are less efficient for trapping the carrier inside the EL and thus lower the power conversion efficiency of the PLED devices.

8.
ACS Nano ; 4(2): 833-40, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20099877

RESUMO

Solution processable fullerene and copolymer bulk heterojunctions are widely used as the active layers of solar cells. In this work, scanning time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used to examine the distribution of [6,6]phenyl-C61-butyric acid methyl ester (PCBM) and regio-regular poly(3-hexylthiophene) (rrP3HT) that forms the bulk heterojunction. The planar phase separation of P3HT:PCBM is observed by ToF-SIMS imaging. The depth profile of the fragment distribution that reflects the molecular distribution is achieved by low energy Cs(+) ion sputtering. The depth profile clearly shows a vertical phase separation of P3HT:PCBM before annealing, and hence, the inverted device architecture is beneficial. After annealing, the phase segregation is suppressed, and the device efficiency is dramatically enhanced with a normal device structure. The 3D image is obtained by stacking the 2D ToF-SIMS images acquired at different sputtering times, and 50 nm features are clearly differentiated. The whole imaging process requires less than 2 h, making it both rapid and versatile.

9.
J Cell Sci ; 122(Pt 17): 3190-8, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19671663

RESUMO

The large T antigens of polyomaviruses target cellular proteins that control fundamental processes, including p53 and the RB family of tumor suppressors. Mechanisms that underlie T-antigen-induced cell transformation need to be fully addressed, because as-yet unidentified target proteins might be involved in the process. In addition, recently identified polyomaviruses are associated with particular human diseases such as aggressive skin cancers. Here, we report that simian virus 40 (SV40) large T antigen interacts with the transforming acidic coiled-coil-containing protein TACC2, which is involved in stabilizing microtubules in mitosis. T antigen directly binds TACC2 and induces microtubule dysfunction, leading to disorganized mitotic spindles, slow progression of mitosis and chromosome missegregation. These mitotic defects are caused by N-terminal-deleted T antigen, which minimally interacts with TACC2, whereas T-antigen-induced microtubule destabilization is suppressed by overexpressing TACC2. Thus, TACC2 might be a key target of T antigen to disrupt microtubule regulation and chromosomal inheritance in the initiation of cell transformation.


Assuntos
Antígenos Virais de Tumores/metabolismo , Proteínas de Transporte/metabolismo , Microtúbulos/metabolismo , Neoplasias/metabolismo , Vírus 40 dos Símios/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Antígenos Virais de Tumores/genética , Células CHO , Proteínas de Transporte/genética , Transformação Celular Viral , Cricetinae , Cricetulus , Células HeLa , Humanos , Microtúbulos/genética , Mitose , Neoplasias/genética , Neoplasias/virologia , Ligação Proteica , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/imunologia , Proteínas Supressoras de Tumor/genética
10.
Cancer Res ; 69(9): 3901-9, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19351824

RESUMO

The aim of this study was to investigate the mechanism of inhibition of Eg5 (kinesin spindle protein), a mitotic kinesin that plays an essential role in establishing mitotic spindle bipolarity, by the novel small molecule inhibitor K858. K858 was selected in a phenotype-based forward chemical genetics screen as an antimitotic agent, and subsequently characterized as an inhibitor of Eg5. K858 blocked centrosome separation, activated the spindle checkpoint, and induced mitotic arrest in cells accompanied by the formation of monopolar spindles. Long-term continuous treatment of cancer cells with K858 resulted in antiproliferative effects through the induction of mitotic cell death, and polyploidization followed by senescence. In contrast, treatment of nontransformed cells with K858 resulted in mitotic slippage without cell death, and cell cycle arrest in G(1) phase in a tetraploid state. In contrast to paclitaxel, K858 did not induce the formation of micronuclei in either cancer or nontransformed cells, suggesting that K858 has minimal effects on abnormalities in the number and structure of chromosomes. K858 exhibited potent antitumor activity in xenograft models of cancer, and induced the accumulation of mitotic cells with monopolar spindles in tumor tissues. Importantly, K858, unlike antimicrotubule agents, had no effect on microtubule polymerization in cell-free and cell-based assays, and was not neurotoxic in a motor coordination test in mice. Taken together, the Eg5 inhibitor K858 represents an important compound for further investigation as a novel anticancer therapeutic.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Cinesinas/antagonistas & inibidores , Tiadiazóis/farmacologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Morte Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células HCT116 , Humanos , Proteínas Mad2 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Paclitaxel/farmacologia , Poliploidia , Proteínas Repressoras/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Tiadiazóis/efeitos adversos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell Cycle ; 8(4): 620-7, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19182528

RESUMO

In vivo cell cycle analysis in higher eukaryotes has been limited by the challenge of preserving the integrity of the living organism while visualizing dividing cells. Here, we propose a new model, which uses the unique combination of features of the Japanese medaka in order to visualize and manipulate the cell cycle progression in a live vertebrate. Our stable transgenic histone H2B-GFP medaka line allows fluorescence-based monitoring of the chromosomes. The system has a high specificity, with a strong GFP signal labeling the chromatin architecture. The subcellular resolution ensures detection of both normal and abnormal divisions in live recordings. This translates into the possibility to quantify temporal and spatial aspects of the cell cycle, such as length or nuclear size, as well as to expose drug toxicity at the earliest stage. We also show that acclimation to cold, a prominent feature of the eurytherm medaka, is a valuable natural way of inducing a reversible cell cycle arrest in the entire living organism. Our results suggest that this manipulation can be performed from the early stages of development, has no toxicity and does not alter the cell cycle profile of the embryo.


Assuntos
Ciclo Celular/fisiologia , Oryzias/embriologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Dados de Sequência Molecular , Oryzias/anatomia & histologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
12.
Nat Cell Biol ; 8(11): 1291-7, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17028578

RESUMO

The p16(INK4a) cyclin-dependent kinase inhibitor has a key role in establishing stable G1 cell-cycle arrest through activating the retinoblastoma (Rb) tumour suppressor protein pRb in cellular senescence. Here, we show that the p16(INK4a) /Rb-pathway also cooperates with mitogenic signals to induce elevated intracellular levels of reactive oxygen species (ROS), thereby activating protein kinase Cdelta (PKCdelta) in human senescent cells. Importantly, once activated by ROS, PKCdelta promotes further generation of ROS, thus establishing a positive feedback loop to sustain ROS-PKCdelta signalling. Sustained activation of ROS-PKCdelta signalling irreversibly blocks cytokinesis, at least partly through reducing the level of WARTS (also known as LATS1), a mitotic exit network (MEN) kinase required for cytokinesis, in human senescent cells. This irreversible cytokinetic block is likely to act as a second barrier to cellular immortalization ensuring stable cell-cycle arrest in human senescent cells. These results uncover an unexpected role for the p16(INK4a)-Rb pathway and provide a new insight into how senescent cell-cycle arrest is enforced in human cells.


Assuntos
Senescência Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/fisiologia , Proteína do Retinoblastoma/fisiologia , Transdução de Sinais/fisiologia , Acetofenonas/farmacologia , Acetilcisteína/farmacologia , Benzopiranos/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Linhagem Celular , Senescência Celular/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Immunoblotting , Modelos Biológicos , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção
13.
Oncogene ; 24(34): 5287-98, 2005 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-16007220

RESUMO

Drosophila tumor suppressor WARTS (Wts) is an evolutionally conserved serine / threonine kinase and participates in a signaling complex that regulates both proliferation and apoptosis to ensure the proper size and shape of the fly. Human counterparts of this complex have been found to be frequently downregulated or mutated in cancers. WARTS, a human homolog of Wts, is also known as tumor suppressor and mitotic regulator, but its molecular implications in tumorigenesis are still obscure. Here, we show that WARTS binds via its C-terminus to the PDZ domain of a proapoptotic serine protease Omi / HtrA2. Depletion of WARTS inhibited Omi / HtrA2-mediated cell death, whereas overexpression of WARTS promoted this process. Furthermore, WARTS can enhance the protease activity of Omi / HtrA2 both in vivo and in vitro. Activation of Omi / HtrA2-mediated cell death is thus a potential mechanism for the tumor suppressive activity of WARTS.


Assuntos
Apoptose/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Serina Endopeptidases/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Células Cultivadas , Citosol/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Proteínas Serina-Treonina Quinases/metabolismo , Transfecção , Proteínas Supressoras de Tumor/metabolismo
14.
Oncogene ; 23(31): 5266-74, 2004 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15122335

RESUMO

Defects in chromosomes or mitotic spindles activate the spindle checkpoint, resulting in cell cycle arrest at prometaphase. The prolonged activation of spindle checkpoint generally leads to mitotic exit without segregation after a transient mitotic arrest and the consequent formation of tetraploid G(1) cells. These tetraploid cells are usually blocked to enter the subsequent S phase by the activation of p53/pRb pathway, which is referred to as the G(1) tetraploidy checkpoint. A human homologue of the Drosophila warts tumor suppressor, WARTS, is an evolutionarily conserved serine-threonine kinase and implicated in development of human tumors. We previously showed that WARTS plays a crucial role in controlling mitotic progression by forming a regulatory complex with zyxin, a regulator of actin filament assembly, on mitotic apparatus. However, when WARTS is activated during cell cycle and how the loss of WARTS function leads to tumorigenesis have not been elucidated. Here we show that WARTS is activated during mitosis in mammalian cells, and that overexpression of a kinase-inactive WARTS in Rat1 fibroblasts significantly induced mitotic delay. This delay resulted from prolonged activation of the spindle assembly checkpoint and was frequently followed by mitotic slippage and the development of tetraploidy. The resulting tetraploid cells then abrogated the G(1) tetraploidy checkpoint and entered S phase to achieve a DNA content of 8N. This impairment of G(1) tetraploidy checkpoint was caused as a consequence of failure to induce p53 expression by expressing a kinase-inactive WARTS. WARTS thus plays a critical role in maintenance of ploidy through its actions in both mitotic progression and the G(1) tetraploidy checkpoint.


Assuntos
Proteínas de Drosophila , Fase G1 , Genoma , Mitose , Proteínas Quinases , Proteínas Serina-Treonina Quinases/fisiologia , Actinas/metabolismo , Animais , Ciclo Celular , DNA/biossíntese , Drosophila , Fibroblastos/metabolismo , Citometria de Fluxo , Células HeLa , Humanos , Microscopia de Fluorescência , Ploidias , Poliploidia , Ratos , Fase S , Fuso Acromático , Fatores de Tempo , Transfecção , Proteína Supressora de Tumor p53/metabolismo
15.
FEBS Lett ; 529(2-3): 319-24, 2002 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-12372621

RESUMO

Identification of physiological substrates for Cdc2/cyclin B is crucial for understanding the functional link between mitotic events and Cdc2/cyclin B activation. A human homologue of the Drosophila warts tumor suppressor, termed WARTS, is a serine/threonine kinase and a dynamic component of the mitotic apparatus. We have found that Cdc2/cyclin B forms a complex with a fraction of WARTS in the centrosome and phosphorylates the Ser613 site of WARTS during mitosis. Immunocytochemical analysis has shown that the S613-phosphorylated WARTS appears in the spindle poles at prometaphase and disappears at telophase. Our findings suggest that Cdc/cyclin B regulates functions of WARTS on the mitotic apparatus.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo , Proteínas de Drosophila , Genes Supressores de Tumor , Mitose , Proteínas Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático , Sequência de Aminoácidos , Western Blotting , Cromatografia em Gel , Células HeLa , Humanos , Microscopia de Fluorescência , Fosforilação , Testes de Precipitina , Proteínas Serina-Treonina Quinases/imunologia , Frações Subcelulares/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA