Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37894678

RESUMO

Perilla frutescens leaves are hypothesized to possess antioxidant and amyloid-ß (Aß) aggregation inhibitory properties primarily due to their polyphenol-type compounds. While these bioactivities fluctuate daily, the traditional methods for quantifying constituent contents and functional properties are both laborious and impractical for immediate field assessments. To address this limitation, the present study introduces an expedient approach for on-site analysis, employing fluorescence spectra obtained through excitation light irradiation of perilla leaves. Standard analytical techniques were employed to evaluate various constituent contents (chlorophyl (Chl), total polyphenol content (TPC), total flavonoid content (TFC), and rosmarinic acid (RA)) and functional attributes (DPPH radical scavenging activity, ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and Aß aggregation inhibitory activity). Correlations between the fluorescence spectra and these parameters were examined using normalized difference spectral index (NDSI), ratio spectral index (RSI), and difference spectral index (DSI) analyses. The resulting predictive model exhibited a high coefficient of determination, with R2 values equal to or greater than 0.57 for constituent contents and 0.49 for functional properties. This approach facilitates the convenient, simultaneous, and nondestructive monitoring of both the chemical constituents and the functional capabilities of perilla leaves, thereby simplifying the determination of optimal harvest times. The model derived from this method holds promise for real-time assessments, indicating its potential for the simultaneous evaluation of both constituents and functionalities in perilla leaves.


Assuntos
Perilla frutescens , Perilla , Perilla frutescens/química , Antioxidantes/química , Perilla/química , Polifenóis/análise , Extratos Vegetais/química , Peptídeos beta-Amiloides/análise , Folhas de Planta/química
2.
Phys Chem Chem Phys ; 25(32): 21317-21323, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37490308

RESUMO

Tetracyanoquinodimethane (TCNQ) is an important constituent of organic conductors and a versatile electron acceptor. TCNQ exhibited thermally activated delayed fluorescence and an unusually long fluorescence lifetime. In this study, we studied the Stark effect on the absorption spectrum of TCNQ using electroabsorption spectroscopy to gain insights into its photophysics. The electroabsorption spectrum was simulated using multiple absorption bands for different electronic states, which were characterized by different dipole moments and polarizabilities. These electronic states are identified as a locally excited (LE) state with a high oscillator strength and zero dipole moment, and an intramolecular charge transfer (ICT) state with a nonzero dipole moment. The mixing of the LE state with the ICT state is augmented when the molecule is perturbed by an electric field. We provide tangible experimental evidence establishing the key role of mixing between the emissive LE and nonemissive ICT states in the deactivation pathway of electronically excited TCNQ. The dipole moment of the ICT state suggests symmetry breaking of the structure belonging to the D2h point group.

3.
J Phys Chem A ; 127(6): 1436-1444, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36740807

RESUMO

Thioflavin T (ThT) is a typical fluorescent marker for detecting the formation of amyloid fibrils, because its fluorescence intensity increases by more than 2 orders of magnitude upon complexation with the fibrils. Strong electrostatic fields on protein surfaces are known to be a significant factor in chemical reactions and biological functions. Therefore, ThT bound to amyloid fibrils must experience strong electric fields. This study employed electroabsorption and Stark fluorescence spectroscopies to clarify the effects of external electric fields on the photophysics of ThT. The absorption spectrum shows two bands ascribed to locally excited (LE) and charge transfer (CT) states. Coupling between the LE and CT states is enhanced in the presence of an external electric field, resulting in fluorescence quenching. The electric field strength of the amyloid fibril surface was inferred from the fluorescence quenching efficiency of ThT.


Assuntos
Amiloide , Corantes Fluorescentes , Fluorescência , Amiloide/metabolismo , Benzotiazóis , Espectrometria de Fluorescência
4.
Foods ; 12(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36766015

RESUMO

Alzheimer's disease (AD) is thought to be caused by the deposition of amyloid-ß (Aß) in the brain. Aß begins to aggregate approximately 20 years before the expression of its symptoms. Previously, we developed a microliter-scale high-throughput screening (MSHTS) system for inhibitors against Aß aggregation using quantum dot nanoprobes. Using this system, we also found that plants in the Lamiaceae, particularly Perilla frutescens var. crispa, have high activity. The cultivation environment has the potential to enhance Aß aggregation inhibitory activity in plants by changing their metabolism. Here, we report on cultivation factors that affected the activity of P. frutescens var. crispa cultivated in three fields under different cultivation conditions. The results revealed that the activity of P. frutescens var. crispa harvested just before flowering was highest. Interestingly, the activity of wind-shielded plants that were cultivated to prevent exposure to wind, was reduced to 1/5th of plants just before flowering. Furthermore, activity just before flowering increased following appropriate nitrogen fertilization and at least one week of drying from the day before harvest. In addition, we confirmed that the P. frutescens var. crispa leaf extracts suppressed Aß-induced toxicity in nerve growth factor-differentiated PC12 cells. In this study, we demonstrated that flowering, wind, soil water content, and soil nitrogen content affected Aß aggregation inhibitory activity, necessary to suppress Aß neurotoxicity, in P. frutescens var. crispa extracts. This study provides practical cultivation methods for P. frutescens var. crispa with high Aß aggregation inhibitory activity for the prevention of AD.

5.
RSC Adv ; 11(36): 22381-22389, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35480805

RESUMO

We performed laser-induced fluorescence (LIF) spectroscopy of 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its solvated complexes with acetonitrile (ACN) and benzene (Bz), under the jet-cooled gas-phase condition. We also carried out fluorescence and its time profile measurements in TCNQ/Bz/hexane solution to compare with the gas-phase results. The LIF excitation spectrum of the S1 (ππ*)-S0 electronic transition of TCNQ monomer exhibited unusual vibronic structure with the maximum intensity at ∼3000 cm-1 above the band origin. In addition, the fluorescence lifetime is more than 100 times longer than that in hexane solution with most of the bands showing double exponential decay. The unusual feature of the vibronic bands is intrinsic and not due to the presence of other species, as confirmed by UV-UV hole-burning (HB) spectroscopy. These unusual features of S1 are thought to be due to the coupling with the S2 state, where S2 was revealed to have intramolecular charge-transfer (ICT) character. The S1-S0 transition of the TCNQ-ACN complex exhibited sharp vibronic bands which are red-shifted by 120 cm-1 from those of the monomer, indicating van der Waals (vdW) interaction between them; however, the fluorescence lifetime was drastically shortened. In contrast, the TCNQ-Bz complex gave a broad electronic spectrum. The study of the fluorescence and its time profile in TCNQ/Bz/hexane solution clearly shows the formation of the CT complex between TCNQ and Bz. Based on the experimental results and density functional theory (DFT) calculations, we propose that in the TCNQ monomer and TCNQ-ACN complex the S1 (ππ*) state is coupled to the intramolecular CT state, while the S1 state of TCNQ in the TCNQ-Bz complex is more strongly coupled to the intermolecular CT state.

6.
J Phys Chem B ; 124(38): 8317-8322, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32865418

RESUMO

Ionic liquids composed of a thiocyanate complex of Ce(III) exhibit bright cyan photoluminescence with a quantum yield close to 40% in addition to paramagnetism. The morphology of a droplet of ionic liquid changes in response to solvent vapor as a stimulus. The emission lifetime and thermal property are characterized. The Weiss temperature is evaluated from the magnetic property measurements, which indicates that antiferromagnetic exchange interaction exists between Ce(III) ions. Insight into the characteristics of the electronic transitions in the Ce(III) complex is obtained using quantum chemical calculations. Thiocyanate complexes of Ce(III) are demonstrated as promising building blocks to produce solvent-free luminescent functional materials.

7.
J Phys Chem B ; 124(36): 7918-7928, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32790378

RESUMO

Tetracyanoquinodimethane (TCNQ) is identified as one of the most important and classic constituents for the synthesis of organic conductors and shows an acute response of the fluorescence quantum yield to subtle changes in the polarity of solvents. Here, we report on characterization of the excited-state dynamics of TCNQ using time-resolved fluorescence and femtosecond transient absorption (TA) measurements in various solvents. Fluorescence decay and TA dynamics reveal that the fluorescence emissive and nonemissive states reach equilibrium within the fluorescence lifetime in carbon tetrachloride. Thermally activated delayed fluorescence of TCNQ is also revealed. The fluorescence in the polar solvents is quenched by the forward relaxation to the nonemissive state within a few picoseconds and the subsequent rapid de-excitation of the nonemissive state within a few tens of picoseconds. The nonemissive state is probably assigned to the triplet state, and the change in the forward and reverse intersystem crossing rates can be responsible for the response of the fluorescence to the polarity of solvents.

8.
Chemphyschem ; 20(19): 2531-2538, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31475788

RESUMO

We report absorption, fluorescence, and Raman spectroscopy of 7,7,8,8-tetracyanoquinodimethane (TCNQ) in a variety of solvents. The fluorescence quantum yields (QYs) of linear alkane solutions are similar to one another, but QY is shown to acutely decrease in other solvents with increasing polarities. The slope of the solvatochromic plot of absorption maxima is inverted from negative to positive with an increase in solvent polarity. A significant change in the frequency of carbon-carbon double bond stretching modes is not observed in Raman spectra of TCNQ in different solvents. The molar absorption coefficient is determined to calculate the oscillator strength of the absorption band. The radiative decay rate constant calculated from the oscillator strength is approximately ten times larger than that elucidated from the fluorescence lifetime and QY. These spectroscopic parameters reveal that the relaxation occurs from a Franck-Condon excited state to a distinct fluorescence emissive state with a smaller transition dipole moment.

9.
Chemphyschem ; 20(8): 996-1000, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30865359

RESUMO

The S1 electronic state of 7,7,8,8-Tetracyanoquinodimethane (TCNQ) has been investigated by laser induced fluorescence (LIF), dispersed fluorescence (DF) spectroscopy, and lifetime measurements under jet-cooled conditions in the gas-phase. The LIF spectrum showed a weak origin band at 412.13 nm (24262 cm-1 ) with prominent progression and combination bands involving vibrations of 327, 1098, and 2430 cm-1 . In addition, very strong bands appeared at ∼363.6 nm (3300 cm-1 above the origin). Both the LIF and DF spectra indicate considerable geometric change in the S1 state. The fluorescence lifetime of S1 at zero-point level was obtained to be 220 ns. This lifetime is 40 times longer than the radiative lifetime estimated from the S1 -S0 oscillator strength. Furthermore, the lifetimes of the vibronic bands exhibited drastic energy dependence, indicating a strong mixing with the triplet (T1 ) or intramolecular charge-transfer (CT) state. This study is thought to disclose intrinsic nature of TCNQ, which has been well known as a component of organic semiconductors and a versatile p-type dopant.

10.
Phys Chem Chem Phys ; 21(10): 5695-5704, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30801107

RESUMO

The dynamics of the exciton generated by photoexcitation of a regioregular poly(3-hexylthiophene) (P3HT) polymer dispersed in a poly(methyl methacrylate) (PMMA) matrix was examined using electro-photoluminescence (E-PL) spectroscopy, where electric field effects on the photoluminescence (PL) spectra were measured. The quadratic electric-field effect was investigated using the modulation technique, with field-induced changes in the PL intensity monitored at the second harmonic of the modulation frequency of the applied electric field. Absorption and PL spectra indicated the formation of both ordered crystalline aggregates and amorphous regions of P3HT polymer chains. Although previous studies of electric field effects on π-conjugated polymers have generally shown that the PL intensity is decreased by electric fields, we report that the PL intensity of P3HT and PL lifetime increased with the quadratic electric-field effect. The magnitude of the change in PL intensity was quantitatively explained in terms of the field-induced decrease in the nonradiative decay rate constants of the exciton. We proposed that a delayed PL, originating from charge carrier recombination, was enhanced in the presence of electric fields. The rate constant of the downhill relaxation process of the exciton, which originated from the relaxation in distributed energy levels due to an inherent energetic disorder in P3HT aggregates, was implied to decrease in the presence of electric fields. The radiative decay rate constant and PL quantum yield of P3HT dissolved in solution, which were evaluated from the molar extinction coefficient and the PL lifetime, were compared with those of P3HT dispersed in a PMMA matrix.

11.
J Phys Chem A ; 120(28): 5497-503, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27341859

RESUMO

We report Stark fluorescence spectroscopy investigation of rubrene dispersed in a poly(methyl methacrylate) film. The features of the fluorescence spectrum are analogous to those in solutions. In the Stark fluorescence spectrum, the decrease of the fluorescence quantum yield in the presence of an external electric field is observed. This result shows that the yield of nonradiative decay processes is increased by the application of an external electric field. It is known that the fluorescence quantum yield for rubrene, which is nearly unity at room temperature, depends on temperature, and a major nonradiative decay process in photoexcited rubrene is ascribed to a thermally activated intersystem crossing (ISC). Equations that express the field-induced fluorescence quenching in terms of the molecular parameters are derived from the ensemble average of electric field effects on the activation energy of the reaction rate constant in random orientation systems. The molecular parameters are then extracted from the observed data. It is inferred that the field-induced increase in the yield of other intramolecular and intermolecular photophysical processes in addition to the ISC should be taken into account.

12.
J Phys Chem A ; 120(25): 4307-13, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27257765

RESUMO

Electroabsorption spectroscopy investigation and the determination of molecular parameters for rubrene dispersed in a poly(methyl methacrylate) (PMMA) matrix are reported. The features of the band system in the absorption spectrum in PMMA are analogous to those in solutions. The changes in the electric dipole moment and the polarizability between the excited and ground states are determined from analysis of the Stark effect in the absorption band. The change in the transition dipole moment in the presence of an external electric field is also observed. Although rubrene is predicted to be classified as a nonpolar molecule, there is a contribution of the difference in the electric dipole moment between the excited and ground states to the electroabsorption spectrum. The origin of the nonzero difference in the electric dipole moment is argued. Stark fluorescence spectroscopy investigation is reported in Part II of this series.

13.
J Am Chem Soc ; 134(16): 6984-6, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22475113

RESUMO

The Mott insulator-metal transition induced by an external stimulus such as electric field, pressure, chemical doping, or photoirradiation has received considerable attention because of the potential use in new optoelectronic functional devices. Here we report an abrupt Mott insulator-metal transition observed as a current jump in a molecular-based Mott insulator, namely, deuterated κ-(BEDT-TTF)(2)Cu[N(CN)(2)]Br, where BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene, upon application of a pulsed voltage of certain magnitude (threshold voltage). Furthermore, the threshold voltage needed for the transition is shown to be reduced by photoirradiation. Thus, the Mott insulator-metal transition can be controlled by a combination of an external electric field and photoirradiation.


Assuntos
Complexos de Coordenação/química , Cobre/química , Campos Eletromagnéticos , Elementos Isolantes , Processos Fotoquímicos
14.
J Phys Chem A ; 113(40): 10603-9, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19791808

RESUMO

Photoluminescence of electron donor-acceptor pairs that show photoinduced electron transfer (PIET) has been measured in a polymer film under simultaneous application of electric field and magnetic field. Fluorescence emitted from the locally excited state (LE fluorescence) of 9-methylanthracene (MAnt) and pyrene (Py) is quenched by an electric field in a mixture of 1,3-dicyanobenzene (DCB) with MAnt or Py, indicating that PIET from the excited state of MAnt or Py to DCB is enhanced by an electric field. Simultaneous application of electric and magnetic fields enhances the reverse process from the radical-ion pair produced by PIET to the LE fluorescent state of MAnt or Py. As a result, the electric-field-induced quenching of the LE fluorescence is reduced by application of the magnetic fields. Thus, the synergy effect of electric and magnetic fields is observed on the LE fluorescence of MAnt or Py. Exciplex fluorescence spectra resulting from PIET can be obtained by analyzing the field effects on photoluminescence spectra, even when the exciplex fluorescence is too weak to be determined from the steady-state or time-resolved photoluminescence spectra at zero field.


Assuntos
Antracenos/química , Magnetismo , Nitrilas/química , Polimetil Metacrilato/química , Pirenos/química , Espectrometria de Fluorescência/métodos , Eletricidade Estática , Transporte de Elétrons , Estrutura Molecular , Fotoquímica
15.
J Chem Phys ; 131(24): 244509, 2009 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-20059081

RESUMO

Electroabsorption (EA) spectra of polar and nonpolar molecules of coumarin 153 (C153) and pyrene in solution and in a polymer film of polymethylmethacrylate (PMMA) have been measured in the UV-visible region at room temperature. The shape of the EA spectra of C153 in benzene, 1,4-dioxane, or monochlorobenzene remarkably depends on the angle between the polarization direction of the absorption light and the applied electric field, whereas the EA spectra of C153 doped in PMMA show only the Stark shift and the field-induced change in spectral shape is negligible. These results demonstrate that C153 is reoriented by application of electric fields in solution, but the molecules are immobilized in a PMMA film. Based on the EA spectra, electric dipole moments both in the ground state and in the excited state have been evaluated for C153 in different solvents. In the EA spectra of pyrene, only the Stark shift is observed both in solution and in PMMA, indicating that the field-induced molecular reorientation does not occur both in solution and in PMMA. The change in dipole moment of C153 as well as the change in molecular polarizability of pyrene following absorption is much larger in solution than that in PMMA.

16.
J Phys Chem A ; 112(19): 4432-6, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18426190

RESUMO

Magnetic field effects on the fluorescence spectrum and on the electrofluorescence spectrum (plots of the electric field-induced change in fluorescence intensity as a function of wavelength) have been examined in electron donor and acceptor pairs of N-ethylcarbazole (ECZ) and dimethyl terephthalate (DMTP) in polymer films at different ratios of donor/acceptor concentration. In the mixture having a high concentration of ECZ, electric field-induced quenching of the exciplex fluorescence originating from the photoinduced electron transfer becomes less efficient in the presence of a magnetic field. In the mixture having a low concentration of ECZ, on the other hand, no magnetic field effect was observed in the electrofluorescence spectrum, indicating that the hole carrier plays an important role in synergy effects of magnetic and electric field effects on exciplex fluorescence. In the absence of the applied electric field, the magnetic field does not affect either exciplex fluorescence with a peak at 450 nm or LE fluorescence emitted from the locally excited state of ECZ but enhances the broad emission with a peak at approximately 380 nm, probably assigned to the fluorescence of another type of exciplex between ECZ and DMTP. Thus, two kinds of magnetic field effects on fluorescence have been observed in a mixture of ECZ and DMTP in a polymer film.

17.
J Phys Chem B ; 111(36): 10687-96, 2007 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-17705424

RESUMO

External electric field effects on absorption and fluorescence spectra of 1,3,6,8-tetrakis(trimethylsilyl)pyrene and 1,3,6,8-tetrakis(trimethylsilylethynyl)pyrene (TMSPy and TMS(E)Py, respectively) have been examined in a poly(methyl methacrylate) (PMMA) film at various concentrations at various temperatures. TMS(E)Py preferentially forms an aggregate in a PMMA film, as the concentration increases, indicating that the acetylenic groups enhance the pi-pi interactions between pyrene molecules. The change in molecular polarizability following excitation has been determined both for the monomer and for the aggregate, based on the electroabsorption spectra. The change in molecular polarizability following emission has also been determined in both compounds, based on the electrofluorescence spectra. TMSPy exhibits two excimer fluorescence emissions at high concentrations which are ascribed to the partially overlapping excimer and the sandwich-type excimer, respectively, besides the monomer fluorescence emitted from the locally excited state. The sandwich-type excimer fluorescence as well as monomer fluorescence is quenched by an electric field, whereas the fluorescence of the partially overlapping excimer is enhanced by an electric field. Excimer fluorescence of TMS(E)Py, which arises from the sandwich-type excimer, is quenched by an electric field at any temperature. Only one species of the partially overlapping excimer is confirmed in TMSPy, while no partially overlapping excimer is confirmed in TMS(E)Py.

18.
J Phys Chem A ; 111(38): 9544-52, 2007 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17705459

RESUMO

External electric field effects on absorption, fluorescence, and phosphorescence spectra of a series of unsubstituted diphenylpolyynes have been examined in a PMMA film. The analysis of the electroabsorption spectra indicates that the shorter diphenylpolyynes exhibit only the change in molecular polarizability, whereas the longer ones exhibit the change both in dipole moment and in molecular polarizability following absorption. The finding of the change in dipole moment following absorption of centrosymmetric diphenylpolyynes is interpreted in terms of the symmetry distortion upon doping a polymer film. When the external electric field is applied, the fluorescence yield is reduced and enhanced, respectively, in diphenylacetylene and diphenyloctatetrayne, indicating that the rate of the nonradiative process from the fluorescence state is accelerated in diphenylacetylene and decelerated in diphenyloctatetrayne by an external electric field. All of the diphenylpolyynes used in the present study exhibit the change in molecular polarizability following the phosphorescence process.

19.
Chemphyschem ; 8(9): 1345-51, 2007 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-17492824

RESUMO

The electronic and structural behaviour of a Pr(III) complex with 4,7-diphenyl-1,10-phenanthroline, [Pr(bathophen)(2)(NO(3))(3)], is investigated with respect to the effect of configuration changes on the Pr(III) centre. [Pr(bathophen)(2)(NO(3))(3)] luminesces from the excited states of the ligand and the metal ion. The fluorescence, ff-emission ((1)D(2)-->(3)H(4)), and phosphorescence bands appear at 394, 608.2 and 482 nm, respectively, in the solid state. In acetonitrile, the complex also shows multiple emissions. From the time-resolved emission and the lifetime measurements, the excitation energy-transfer in [Pr(bathophen)(2)(NO(3))(3)] is clarified, that is, the upper excited triplet level of the ligand acts as an energy donor, while the (1)D(2) levels of Pr(III) is the acceptor. Additionally, the emission phenomena of the complex can be modified by molecular distortion, particularly by rotation of the phenyl groups in the ligand.

20.
J Phys Chem B ; 111(18): 4860-6, 2007 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-17428082

RESUMO

The air/liquid interface of 1-alkyl-3-methylimidazolium tetrafluoroborates with the general formula [C(n)mim]BF(4) (n = 4-11) was studied using infrared-visible sum frequency generation (SFG) vibrational spectroscopy. The probability of the gauche defect per CH2-CH2 bond in the alkyl chain decreases as the number of carbon atoms in the alkyl chain increases. This observation suggests that the interaction between the alkyl chains is enhanced as the alkyl chain length becomes longer. The frequencies of the C-H stretching vibrational modes observed in the SFG spectra are higher than those of the corresponding peak positions observed in the infrared spectra of the bulk liquids. This shift is consistent with a structure in which the alkyl chain protrudes from the bulk liquid into the air. A local structure, which originates from the intermolecular interaction between the ionic liquid molecules, is proposed to explain these observations.


Assuntos
Boratos/química , Líquidos Iônicos/química , Temperatura , Ar , Sensibilidade e Especificidade , Espectrofotometria Infravermelho/métodos , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA