RESUMO
BACKGROUND: Scleral extracellular matrix (ECM) remodeling plays a crucial role in the development of myopia, particularly in ocular axial elongation. Thrombospondin-1 (THBS1), also known as TSP-1, is a significant cellular protein involved in matrix remodeling in various tissues. However, the specific role of THBS1 in myopia development remains unclear. METHOD: We employed the HumanNet database to predict genes related to myopic sclera remodeling, followed by screening and visualization of the predicted genes using bioinformatics tools. To investigate the potential target gene Thbs1, we utilized lens-induced myopia models in male C57BL/6J mice and performed Western blot analysis to detect the expression level of scleral THBS1 during myopia development. Additionally, we evaluated the effects of scleral THBS1 knockdown on myopia development through AAV sub-Tenon's injection. The refractive status and axial length were measured using a refractometer and SD-OCT system. RESULTS: During lens-induced myopia, THBS1 protein expression in the sclera was downregulated, particularly in the early stages of myopia induction. Moreover, the mice in the THBS1 knockdown group exhibited alterations in myopia development in both refraction and axial length changed compared to the control group. Western blotting analysis confirmed the effectiveness of AAV-mediated knockdown, demonstrating a decrease in COLA1 expression and an increase in MMP9 levels in the sclera. CONCLUSION: Our findings indicate that sclera THBS1 levels decreased during myopia development and subsequent THBS1 knockdown showed a decrease in scleral COLA1 expression. Taken together, these results suggest that THBS1 plays a role in maintaining the homeostasis of scleral extracellular matrix, and the reduction of THBS1 may promote the remodeling process and then affect ocular axial elongation during myopia progression.
Assuntos
Miopia , Esclera , Animais , Masculino , Camundongos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Miopia/genética , Miopia/metabolismo , Esclera/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismoRESUMO
BACKGROUND: Recent studies have indicated a strong correlation between endoplasmic reticulum (ER) stress and myopia and that eyedrops containing the ER stress inducer tunicamycin (Tm) can induce myopic changes in C57BL/6 J mice. Therefore, this study aimed to create a new myopia model using Tm eyedrops and to explore the mechanism of ER stress-mediated myopia development. METHODS: Three-week-old C57BL/6 J mice were treated with different concentrations (0, 25, 50, and 100 µg/mL) and/or number of applications (zero, one, three, and seven) of Tm eyedrops. Refraction and axial length (AL) were measured before and one week after Tm treatment. Scleral collagen alterations were evaluated under polarised light after picrosirius red staining. ER stress-related indicators, such as the expression of collagen I and cleaved collagen were detected using Western blotting. RESULTS: Compared with the control group, mice administered eyedrops with 50 µg/mL Tm only once showed the greatest myopic shifts in refraction and AL elongation and reduced scleral expression of collagen I. Picrosirius red staining showed a lower percentage of bundled collagen in the Tm group. Expression of ER-stress indicators increased in the Tm groups. Furthermore, optimised administration of Tm induced matrix metalloproteinase-2 (MMP2) expression in the sclera, which plays a major role in collagen degradation. CONCLUSIONS: We have demonstrated that ER stress in the sclera is involved in myopia progression. Tm eyedrops induced myopic changes, loosening of the scleral collagen and decreased expression of collagen I. This process may be associated with ER stress in the sclera, which upregulates the expression of MMP2 leading to collagen degradation.
RESUMO
Background: Ocular axial elongation is one of the features of myopia progression. Endoplasmic reticulum (ER) stress-associated scleral remodeling plays an important role in ocular axial elongation. Bisphenol A (BPA) is one of the most common environmental pollutants and is known to affect various human organs through ER stress. However, whether BPA exerts an effect on scleral remodeling remains unknown. The purpose of this study was to determine the effect of BPA on the development of myopia and scleral ER stress. Methods: BPA was administered by intraperitoneal injection. 4-PBA was administered as an endoplasmic reticulum stress inhibitor by eye drops. Refraction and axial length were measured by refractometer and SD-OCT system. Western blot was performed to detect the expression level of ER stress-related proteins. Results: BPA-administered mice exhibit axial elongation and myopic refractive shift with endoplasmic reticulum stress in the sclera. BPA administration activated scleral PERK and ATF6 pathways, and 4-PBA eye drops attenuated ER stress response and suppressed myopia progression. Conclusion: BPA controlled axial elongation during myopia development in a mouse model by inducing scleral ER stress and activation of the PERK/ATF6 pathway. 4-PBA eye drops as ER stress inhibitor suppressed BPA-induced myopia development.
RESUMO
Purpose: Myopic choroidal neovascularization (mCNV) is a prevalent cause of vision loss. However, the development of effective therapeutic targets for mCNV has been hindered by the paucity of suitable animal models. Therefore, the aim of this study is to identify potential genes and pathways associated with mCNV and to unearth prospective therapeutic targets that can be utilized to devise efficacious treatments.Methods: Text data mining was used to identify genes linked to choroid, neovascularization, and myopia. g: Profiler was utilized to analyze the biological processes of gene ontology and the Reactome pathways. Protein interaction network analysis was performed using strings and visualized in Cytoscape. MCODE and cytoHubba were used for further screening.Results: Discovery-driven text data mining identified 55 potential genes related to choroid, neovascularization, and myopia. Gene enrichment analysis revealed 11 biological processes and seven Reactome pathways. A protein-protein interaction network with 47 nodes was constructed and analyzed using centrality ranking. Key clusters were identified through algorithm tools. Finally, 14 genes (IL6, FGF2, MMP9, IL10, TNF, MMP2, HGF, MMP3, IGF1, CCL2, CTNNB1, BDNF, NGF, and EDN1), in addition to VEGFA, were evaluated as targets with potential as future therapeutics.Conclusions: This study provides new potential therapeutic targets for mCNV, including IL6, FGF2, MMP9, IL10, TNF, MMP2, HGF, MMP3, IGF1, CCL2, CTNNB1, BDNF, NGF, and EDN1, which correspond to seven potential enriched pathways. These findings provide a basis for further research and offer new possibilities for developing therapeutic interventions for this condition.
Assuntos
Neovascularização de Coroide , Miopia Degenerativa , Humanos , Metaloproteinase 2 da Matriz , Metaloproteinase 3 da Matriz , Metaloproteinase 9 da Matriz , Miopia Degenerativa/diagnóstico , Interleucina-6 , Fator Neurotrófico Derivado do Encéfalo , Fator 2 de Crescimento de Fibroblastos , Interleucina-10 , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/genética , Neovascularização de Coroide/diagnósticoRESUMO
Inactivity causes insulin resistance in skeletal muscle and exacerbates various lifestyle-related diseases. We previously found that 24-h hindlimb cast immobilization (HCI) of the predominantly slow-twitch soleus muscle increased intramyocellular diacylglycerol (IMDG) and insulin resistance by activation of lipin1, and HCI after a high-fat diet (HFD) further aggravated insulin resistance. Here, we investigated the effects of HCI on the fast-twitch-predominant plantaris muscle. HCI reduced the insulin sensitivity of plantaris muscle by approximately 30%, and HCI following HFD dramatically reduced insulin sensitivity by approximately 70% without significant changes in the amount of IMDG. Insulin-stimulated phosphorylation levels of insulin receptor (IR), IR substrate-1, and Akt were reduced in parallel with the decrease in insulin sensitivity. Furthermore, tyrosine phosphatase 1B (PTP1B), a protein known to inhibit insulin action by dephosphorylating IR, was activated, and PTP1B inhibition canceled HCI-induced insulin resistance. In conclusion, HCI causes insulin resistance in the fast-twitch-predominant plantaris muscle as well as in the slow-twitch-predominant soleus muscle, and HFD potentiates these effects in both muscle types. However, the mechanism differed between soleus and plantaris muscles, since insulin resistance was mediated by the PTP1B inhibition at IR in plantaris muscle.
RESUMO
Myopia is becoming a leading cause of vision impairment. An effective intervention is needed. Lactoferrin (LF) is a protein that has been reported to inhibit myopia progression when taken orally. This study looked at the effects of different forms of LF, such as native LF and digested LF, on myopia in mice. Mice were given different forms of LF from 3 weeks of age, and myopia was induced with minus lenses from 4 weeks of age. Results showed that mice given digested LF or holo-LF had a less elongated axial length and thinned choroid, compared to those given native-LF. Gene expression analysis also showed that the groups given native-LF and its derivatives had lower levels of certain cytokines and growth factors associated with myopia. These results suggest that myopia can be more effectively suppressed by digested LF or holo-LF than native-LF.
Assuntos
Lactoferrina , Camundongos , Animais , Lactoferrina/farmacologia , Lactoferrina/metabolismoRESUMO
Myopia is becoming more common across the world, necessitating the development of preventive methods. We investigated the activity of early growth response 1 (EGR-1) protein and discovered that Ginkgo biloba extracts (GBEs) activated EGR-1 in vitro. In vivo, C57BL/6 J mice were fed either normal or 0.0667% GBEs (200 mg/kg) mixed chow (n = 6 each), and myopia was induced with - 30 diopter (D) lenses from 3 to 6 weeks of age. Refraction and axial length were measured by an infrared photorefractor and an SD-OCT system, respectively. In lens-induced myopia mice, oral GBEs significantly improved refractive errors (- 9.92 ± 1.53 D vs. - 1.67 ± 3.51 D, p < 0.001) and axial elongation (0.22 ± 0.02 mm vs. 0.19 ± 0.02 mm, p < 0.05). To confirm the mechanism of GBEs in preventing myopia progression, the 3-week-old mice were divided into normally fed with either myopic-induced or non-myopic-induced groups and GBEs fed with either myopic-induced or non-myopic-induced groups (n = 10 each). Choroidal blood perfusion was measured with optical coherence tomography angiography (OCTA). In both non-myopic induced groups, compared to normal chow, oral GBEs significantly improved choroidal blood perfusion (8.48 ± 15.75%Area vs. 21.74 ± 10.54%Area, p < 0.05) and expression of Egr-1 and endothelial nitric oxide synthase (eNOS) in the choroid. In both myopic-induced groups, compared to normal chow, oral GBEs also improved choroidal blood perfusion (- 9.82 ± 9.47%Area vs. 2.29 ± 11.84%Area, p < 0.05) and was positively correlated with the change in choroidal thickness. These findings suggest that GBEs may inhibit the progression of myopia by improving choroidal blood perfusion.
Assuntos
Miopia , Erros de Refração , Animais , Camundongos , Camundongos Endogâmicos C57BL , Ginkgo biloba , Miopia/tratamento farmacológico , AngiografiaRESUMO
PURPOSE: Apart from genetic factors, recent animal studies on myopia have focused on localised mechanisms. In this study, we aimed to examine the contralateral effects of monocular experimental myopia and recovery, which cannot be explained by a mere local mechanism. METHODS: One eye of 3-week-old C57BL/6 male mice was fitted with a -30 dioptre (D) lens. The mice were distributed into two groups based on different conditions in the contralateral eye: either no lens (NLC) (n = 10) or a Plano lens on the contralateral eye (PLC) group (n = 6). Mice receiving no treatment on either eye were set as a control group (n = 6). Lenses were removed after 3 weeks of myopia induction. All mice were allowed to recover for 1 week in the same environment. Refractive status, axial length (AL) and choroidal thickness were measured before myopia induction, after 1 and 3 weeks of lens wear and after 1 week of recovery. RESULTS: One week after removing the lenses, complete recovery was observed in the eyes that wore the -30 D lenses. In both the PLC and NLC groups, the refractive status showed a myopic shift after lens removal. Additionally, the choroid was significantly thinned in these eyes. The -30 D wearing eye showed a significant increase in AL after 3 weeks of lens wear. While the AL of the -30 D wearing eye ceased to grow after the lens was removed, the AL in the PLC and NLC contralateral eyes increased, and the binocular ALs gradually converged. CONCLUSIONS: Recovery of lens-induced myopia was observed in mouse models. In the fellow eyes, the effects, including thinning of the choroid and changes in refractive status, were triggered by contralateral visual cues.
Assuntos
Lentes de Contato , Miopia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Olho , Miopia/etiologia , Miopia/genética , Refração Ocular , Corioide , Modelos Animais de DoençasRESUMO
The prevalence of myopia has been steadily increasing for several decades, and this condition can cause extensive medical and economic issues in society. Exposure to violet light (VL), a short wavelength (360-400 nm) of visible light from sunlight, has been suggested as an effective preventive and suppressive treatments for the development and progression of myopia. However, the clinical application of VL remains unclear. In this study, we aimed to investigate the preventive and suppressive effects of VL on myopia progression. Various transmittances of VL (40%, 70%, and 100%) were tested in C57BL/6J mice with lens-induced myopia (LIM). Changes in the refractive error, axial length, and choroid thickness during the 3-week LIM were measured. The myopic shift in refractive error and difference in axial length between the 0 and -30 diopter lens was lessened in a transmission-dependent manner. Choroidal thinning, which was observed in myopic conditions, was suppressed by VL exposure and affected by its transmission. The results suggest that myopia progression can be managed using VL transmittance. Therefore, these factors should be considered for the prevention and treatment of myopia.
Assuntos
Cristalino , Miopia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Miopia/prevenção & controle , Luz , Corioide , Comprimento Axial do OlhoRESUMO
Axial length is the primary determinant of eye size, and it is elongated in myopia. However, the underlying mechanism of the onset and progression of axial elongation remain unclear. Here, we show that endoplasmic reticulum (ER) stress in sclera is an essential regulator of axial elongation in myopia development through activation of both PERK and ATF6 axis followed by scleral collagen remodeling. Mice with lens-induced myopia (LIM) showed ER stress in sclera. Pharmacological interventions for ER stress could induce or inhibit myopia progression. LIM activated all IRE1, PERK and ATF6 axis, and pharmacological inhibition of both PERK and ATF6 suppressed myopia progression, which was confirmed by knocking down above two genes via CRISPR/Cas9 system. LIM dramatically changed the expression of scleral collagen genes responsible for ER stress. Furthermore, collagen fiber thinning and expression of dysregulated collagens in LIM were ameliorated by 4-PBA administration. We demonstrate that scleral ER stress and PERK/ATF6 pathway controls axial elongation during the myopia development in vivo model and 4-PBA eye drop is promising drug for myopia suppression/treatment.
Assuntos
Fator 6 Ativador da Transcrição , Miopia , Esclera , eIF-2 Quinase , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Butilaminas , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Camundongos , Miopia/genética , Miopia/metabolismo , Soluções Oftálmicas/metabolismo , Soluções Oftálmicas/uso terapêutico , Proteínas Serina-Treonina Quinases , Esclera/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismoRESUMO
Retinal ischemia-reperfusion (I/R) injury is a common cause of visual impairment. To date, no effective treatment is available for retinal I/R injury. In addition, the precise pathological mechanisms still need to be established. Recently, pemafibrate, a peroxisome proliferator-activated receptor α (PPARα) modulator, was shown to be a promising drug for retinal ischemia. However, the role of pemafibrate in preventing retinal I/R injury has not been documented. Here, we investigated how retinal degeneration occurs in a mouse model of retinal I/R injury by elevation of intraocular pressure and examined whether pemafibrate could be beneficial against retinal degeneration. Adult mice were orally administered pemafibrate (0.5 mg/kg/day) for 4 days, followed by retinal I/R injury. The mice were continuously administered pemafibrate once every day until the end of the experiments. Retinal functional changes were measured using electroretinography. Retina, liver, and serum samples were used for western blotting, quantitative PCR, immunohistochemistry, or enzyme linked immunosorbent assay. Retinal degeneration induced by retinal inflammation was prevented by pemafibrate administration. Pemafibrate administration increased the hepatic PPARα target gene expression and serum levels of fibroblast growth factor 21, a neuroprotective molecule in the eye. The expression of hypoxia-response and pro-and anti-apoptotic/inflammatory genes increased in the retina following retinal I/R injury; however, these changes were modulated by pemafibrate administration. In conclusion, pemafibrate is a promising preventive drug for ischemic retinopathies.
Assuntos
Traumatismo por Reperfusão , Degeneração Retiniana , Animais , Benzoxazóis , Butiratos , Modelos Animais de Doenças , Isquemia , Camundongos , PPAR alfa/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismoRESUMO
Myopia is increasing worldwide and its preventable measure should urgently be pursued. N-3 polyunsaturated fatty acids (PUFAs) have been reported to have various effects such as vasodilative and anti-inflammatory, which myopia may be involved in. This study is to investigate the inhibitory effect of PUFAs on myopia progression. A lens-induced myopia (LIM) model was prepared using C57B L6/J 3-week-old mice, which were equipped with a -30 diopter lens to the right eye. Chows containing two different ratios of n-3/n-6 PUFA were administered to the mice, and myopic shifts were confirmed in choroidal thickness, refraction, and axial length in the n-3 PUFA-enriched chow group after 5 weeks. To exclude the possibility that the other ingredients in the chow may have taken the suppressive effect, fat-1 transgenic mice, which can produce n-3 PUFAs endogenously, demonstrated significant suppression of myopia. To identify what elements in n-3 PUFAs took effects on myopia suppression, enucleated eyes were used for targeted lipidomic analysis, and eicosapentaenoic acid (EPA) were characteristically distributed. Administration of EPA to the LIM model confirmed the inhibitory effect on choroidal thinning and myopia progression. Subsequently, to identify the elements and the metabolites of fatty acids effective on myopia suppression, targeted lipidomic analysis was performed and it demonstrated that metabolites of EPA were involved in myopia suppression, whereas prostaglandin E2 and 14,15-dihydrotestosterone were associated with progression of myopia. In conclusion, EPA and its metabolites are related to myopia suppression and inhibition of choroidal thinning.
Assuntos
Ácidos Graxos Ômega-3 , Miopia , Animais , Corioide/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Lipidômica , Camundongos , Camundongos Transgênicos , Miopia/metabolismo , Miopia/prevenção & controleRESUMO
Myopia, which prevalence is rapidly increasing, causes visual impairment; however, the onset mechanism of pathological axial length (AL) elongation remains unclear. A highly vascularized choroid between the retinal pigment epithelium (RPE) and sclera not only maintains physiological activities, but also contributes to ocular development and growth regulation. Vascular endothelial growth factor (VEGF) secreted from the RPE to the choroid is essential for retinal function and maintenance of the choriocapillaris. Herein, we demonstrated that the loss of VEGF secreted from the RPE caused abnormal choriocapillaris development and AL elongation, with features similar to those of the lens-induced myopia (LIM) mouse model, whereas VEGF overexpression by knocking-out von Hippel-Lindau (VHL) specific to the RPE expands the choriocapillaris and shortens the AL. Additionally, LDL Receptor Related Protein 2 (LRP2) deletion in the RPE downregulated VEGF expression and leads to pathological AL elongation. Furthermore, high-myopia patients without choriocapillaris demonstrated longer ALs than did those with preserved choriocapillaris. These results suggest that physiological secretion of VEGF from the RPE is required for proper AL development by maintaining the choriocapillaris. The pinpoint application of VEGF to the choriocapillaris may become a potential intervention for the prevention and treatment of axial myopia progression.
RESUMO
Physical inactivity impairs muscle insulin sensitivity. However, its mechanism is unclear. To model physical inactivity, we applied 24-h hind-limb cast immobilization (HCI) to mice with normal or high-fat diet (HFD) and evaluated intramyocellular lipids and the insulin signaling pathway in the soleus muscle. Although 2-wk HFD alone did not alter intramyocellular diacylglycerol (IMDG) accumulation, HCI alone increased it by 1.9-fold and HCI after HFD further increased it by 3.3-fold. Parallel to this, we found increased protein kinase C ε (PKCε) activity, reduced insulin-induced 2-deoxyglucose (2-DOG) uptake, and reduced phosphorylation of insulin receptor ß (IRß) and Akt, key molecules for insulin signaling pathway. Lipin1, which converts phosphatidic acid to diacylglycerol, showed increase of its activity by HCI, and dominant-negative lipin1 expression in muscle prevented HCI-induced IMDG accumulation and impaired insulin-induced 2-DOG uptake. Furthermore, 24-h leg cast immobilization in human increased lipin1 expression. Thus, even short-term immobilization increases IMDG and impairs insulin sensitivity in muscle via enhanced lipin1 activity.NEW & NOTEWORTHY Physical inactivity impairs muscle insulin sensitivity. However, its mechanism is unclear. To model physical inactivity, we applied 24-h hind-limb cast immobilization to mice with normal or high-fat diet and evaluated intramyocellular lipids and the insulin signaling pathway in the soleus muscle. We found that even short-term immobilization increases intramyocellular diacylglycerol and impairs insulin sensitivity in muscle via enhanced lipin1 activity.
Assuntos
Diglicerídeos/metabolismo , Resistência à Insulina , Músculo Esquelético/metabolismo , Fosfatidato Fosfatase/metabolismo , Comportamento Sedentário , Adulto , Animais , Moldes Cirúrgicos , Elevação dos Membros Posteriores , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Transdução de Sinais/fisiologia , Fatores de Tempo , Adulto JovemRESUMO
Myopia has become a major public health concern, particularly across much of Asia. It has been shown in multiple studies that outdoor activity has a protective effect on myopia. Recent reports have shown that short-wavelength visible violet light is the component of sunlight that appears to play an important role in preventing myopia progression in mice, chicks, and humans. The mechanism underlying this effect has not been understood. Here, we show that violet light prevents lens defocus-induced myopia in mice. This violet light effect was dependent on both time of day and retinal expression of the violet light sensitive atypical opsin, neuropsin (OPN5). These findings identify Opn5-expressing retinal ganglion cells as crucial for emmetropization in mice and suggest a strategy for myopia prevention in humans.
Assuntos
Cristalino/metabolismo , Luz , Proteínas de Membrana/metabolismo , Miopia/prevenção & controle , Opsinas/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Miopia/metabolismo , Refração Ocular , Tomografia de Coerência Óptica , Corpo VítreoRESUMO
CONTEXT: Endurance-trained athletes have high oxidative capacities, enhanced insulin sensitivities, and high intracellular lipid accumulation in muscle. These characteristics are likely due to altered gene expression levels in muscle. DESIGN AND SETTING: We compared intramyocellular lipid (IMCL), insulin sensitivity, and gene expression levels of the muscle in eight nonobese healthy men (control group) and seven male endurance athletes (athlete group). Their IMCL levels were measured by proton-magnetic resonance spectroscopy, and their insulin sensitivity was evaluated by glucose infusion rate (GIR) during a euglycemic-hyperinsulinemic clamp. Gene expression levels in the vastus lateralis were evaluated by quantitative RT-PCR (qRT-PCR) and microarray analysis. RESULTS: IMCL levels in the tibialis anterior muscle were approximately 2.5 times higher in the athlete group compared to the control group, while the IMCL levels in the soleus muscle and GIR were comparable. In the microarray hierarchical clustering analysis, gene expression patterns were not clearly divided into control and athlete groups. In a gene set enrichment analysis with Gene Ontology gene sets, "RESPONSE TO LIPID" was significantly upregulated in the athlete group compared with the control group. Indeed, qRT-PCR analysis revealed that, compared to the control group, the athlete group had 2-3 times higher expressions of proliferator-activated receptor gamma coactivator-1 alpha (PGC1A), adiponectin receptors (AdipoRs), and fatty acid transporters including fatty acid transporter-1, plasma membrane-associated fatty acid binding protein, and lipoprotein lipase. CONCLUSIONS: Endurance runners with higher IMCL levels have higher expression levels of genes related to lipid metabolism such as PGC1A, AdipoRs, and fatty acid transporters in muscle.
RESUMO
Recent studies have reported an association between myopia development and local ocular inflammation. Lactoferrin (LF) is an iron-binding protein present in saliva, tears, and mother's milk. Furthermore, sequestering iron by LF can cause its antibacterial property. Moreover, LF has an anti-inflammatory effect. We aimed to determine the suppressive effect of LF against the development and progress of myopia using a murine lens-induced myopia (LIM) model. We divided male C57BL/6J mice (3 weeks old) into two groups. While the experimental group was orally administered LF (1600 mg/kg/day, from 3-weeks-old to 7-weeks-old), a similar volume of Ringer's solution was administered to the control group. We subjected the 4-week-old mice to -30 diopter lenses and no lenses on the right and left eyes, respectively. We measured the refraction and the axial length at baseline and 3 weeks after using a refractometer and a spectral domain optical coherence tomography (SD-OCT) system in both eyes. Furthermore, we determined the matrix metalloproteinase-2 (MMP-2) activity, and the amount of interleukin-6 (IL-6), MMP-2, and collagen 1A1 in the choroid or sclera. The eyes with a minus lens showed a refractive error shift and an axial length elongation in the control group, thus indicating the successful induction of myopia. However, there were no significant differences in the aforementioned parameters in the LF group. While LIM increased IL-6 expression and MMP-2 activity, it decreased collagen 1A1 content. However, orally administered LF reversed these effects. Thus, oral administration of LF suppressed lens-induced myopia development by modifying the extracellular matrix remodeling through the IL-6-MMP-2 axis in mice.
Assuntos
Lactoferrina/administração & dosagem , Lactoferrina/uso terapêutico , Metaloproteinase 2 da Matriz/metabolismo , Leite/química , Miopia/tratamento farmacológico , Administração Oral , Animais , Bovinos , Corioide/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Interleucina-6/metabolismo , Cristalino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclera/metabolismoRESUMO
Diverse vascular diseases such as diabetic retinopathy, occlusion of retinal veins or arteries and ocular ischemic syndrome can lead to retinal ischemia. To investigate pathological mechanisms of retinal ischemia, relevant experimental models need to be developed. Anatomically, a main retinal blood supplying vessel is the ophthalmic artery (OpA) and OpA originates from the internal carotid artery of the common carotid artery (CCA). Thus, disruption of CCA could effectively cause retinal ischemia. Here, we established a mouse model of retinal ischemia by transient bilateral common carotid artery occlusion (tBCCAO) to tie the right CCA with 6-0 silk sutures and to occlude the left CCA transiently for 2 seconds via a clamp, and showed that tBCCAO could induce acute retinal ischemia leading to retinal dysfunction. The current method reduces reliance on surgical instruments by only using surgical needles and a clamp, shortens occlusion time to minimize unexpected animal death, which is often seen in mouse models of middle cerebral artery occlusion, and maintains reproducibility of common retinal ischemic findings. The model can be utilized to investigate the pathophysiology of ischemic retinopathies in mice and further can be used for in vivo drug screening.
Assuntos
Arteriopatias Oclusivas/complicações , Artéria Carótida Primitiva/patologia , Isquemia/etiologia , Retina/lesões , Animais , Arteriopatias Oclusivas/diagnóstico por imagem , Arteriopatias Oclusivas/fisiopatologia , Círculo Arterial do Cérebro/patologia , Modelos Animais de Doenças , Eletrorretinografia , Gliose/complicações , Gliose/diagnóstico por imagem , Gliose/patologia , Gliose/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/diagnóstico por imagem , Isquemia/patologia , Isquemia/fisiopatologia , Masculino , Camundongos , Perfusão , Estabilidade Proteica , Reprodutibilidade dos Testes , Retina/diagnóstico por imagem , Retina/patologia , Retina/fisiopatologia , Tomografia de Coerência ÓpticaRESUMO
The natural carotenoid crocetin has been reported to suppress phenotypes of an experimental myopia model in mice. We investigated the minimum effective dose to prevent myopia progression in a murine model. Three-week-old male mice (C57B6/J) were equipped with a -30 diopter (D) lens to induce myopia, and fed with normal chow, 0.0003%, or 0.001% of crocetin-containing chow. Changes in refractive errors and axial lengths (AL) were evaluated after three weeks. Pharmacokinetics of crocetin in the plasma and the eyeballs of mice was evaluated with specific high sensitivity quantitative analysis using liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine the minimum effective dosage. A concentration of 0.001% of crocetin-containing chow showed a significant (p < 0.001) suppressive effect against both refractive and AL changes in the murine model. Meanwhile, there was no significant difference of AL change between the 0.0003% and the normal chow groups. The concentration of crocetin in the plasma and the eyeballs from mice fed with 0.001% crocetin-containing chow was significantly higher than control and 0.0003% crocetin-containing chow. In conclusion, we suggest 0.001% of crocetin-containing extract is the minimum effective dose showing a significant suppressive effect against both refractive and AL changes in the murine model.
Assuntos
Carotenoides , Miopia , Animais , Carotenoides/administração & dosagem , Carotenoides/análise , Carotenoides/farmacologia , Suplementos Nutricionais , Modelos Animais de Doenças , Progressão da Doença , Olho/química , Olho/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miopia/patologia , Miopia/prevenção & controle , Vitamina A/análogos & derivadosRESUMO
Whether hyperoxia affects the refraction in neonatal and adult mice is unknown. The mice exposed to 85% oxygen at postnatal 8 days (P8d) for 3 days and the mice exposed to normal air were assigned to the neonatal hyperoxia and normoxia groups, respectively. The refraction, the corneal curvature radius (CR) and the axial length (AL) were measured at P30d and P47d. Postnatal 6 weeks (P6w) adult mice were divided into the adult hyperoxia and normoxia groups. These parameters were measured before oxygen exposure, after 1 and 6 weeks, and every 7 weeks. The lens elasticity was measured at P7w and P26w by enucleation. The neonatal hyperoxia group showed a significantly larger myopic change than the neonatal normoxia group (P47d -6.56 ± 5.89 D, +4.11 ± 2.02 D, p < 0.001), whereas the changes in AL were not significantly different (P47d, 3.31 ± 0.04 mm, 3.31 ± 0.05 mm, p = 0.852). The adult hyperoxia group also showed a significantly larger myopic change (P12w, -7.20 ± 4.09 D, +7.52 ± 2.54 D, p < 0.001). The AL did not show significant difference (P12w, 3.44 ± 0.03 mm, 3.43 ± 0.01 mm, p = 0.545); however, the CR in the adult hyperoxia group was significantly smaller than the adult normoxia group (P12w, 1.44 ± 0.03 mm, 1.50 ± 0.03 mm, p = 0.003). In conclusion, hyperoxia was demonstrated to induce myopic shift both in neonatal and adult mice, which was attributed to the change in the CR rather than the AL. Elucidation of the mechanisms of hyperoxia and the application of this result to humans should be carried out in future studies.