RESUMO
Space charge layers (SCLs) formed at grain boundaries (GBs) are considered to critically influence the properties of polycrystalline materials such as ion conductivities. Despite the extensive researches on this issue, the presence of GB SCLs and their relationship with GB orientations, atomic-scale structures and impurity/solute segregation behaviors remain controversial, primarily due to the difficulties in directly observing charge distribution at GBs. In this study, we directly observe electric field distribution across the well-defined yttria-stabilized zirconia (YSZ) GBs by tilt-scan averaged differential phase contrast scanning transmission electron microscopy. Our observation clearly reveals the existence of SCLs across the YSZ GBs with nanometer precision, which are significantly varied depending on the GB orientations and the resultant core atomic structures. Moreover, the magnitude of SCLs show a strong correlation with yttrium segregation amounts. This study provides critical insights into the complex interplay between SCLs, orientations, atomic structures and segregation of GBs in ionic crystals.
RESUMO
Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for label-free chemical analysis. The emergence of nonmetallic materials as SERS substrates, offering chemical signal enhancements, presents an exciting direction for achieving reproducible and biocompatible SERS, a challenge with traditional metallic substrates. Despite the potential, the realm of nonmetallic SERS substrates, particularly nanoparticles, remains largely untapped. Here, we present defect-engineered coordination compounds (DECCs) based on Prussian blue analogues (PBAs) as a class of nonmetallic nanoparticle-based SERS substrates. We demonstrate the utility and flexibility of the DECC template by incorporating various metal (M) elements into PBAs to synthesize nanoparticles that deliver substantial chemical mechanism (CM)-based enhancements to the Raman signal with a â¼ 108-fold increase. The introduction of the M-PBA-based DECC nanoparticles as a class of SERS substrates represents a pioneering stride, enabling the straightforward and systematic exploration of a library of compounds for SERS-based analysis of a wide range of target molecules, especially biomolecules.
RESUMO
An all-solid-state fluoride-ion battery (FIB) is one of the promising candidates for the next-generation battery owing to its high energy density and high safety. For the practical application of FIBs, it is an urgent task to operate FIBs at lower temperatures. However, there are still two major difficulties in conventional conversion-type pure metal cathodes: low F- ion conductivities and poor cycle stabilities. Here, the conversion-type Sn-based intermetallic alloy is proposed as a new cathode that can overcome the above issues. The present CoSn2 cathode retains the discharge capacity of 229 mAh g-1 after 250 cycles, even at 60 °C. CoSn2 is decomposed into CoF2 and SnF2 nanocrystals in the charging process, and the nanoscale network structure of SnF2 provides the fast F- ion conduction path throughout the cathode, facilitating the battery operation at lower temperatures. Moreover, the formed CoF2 and SnF2 phases are merged into the original CoSn2 phase in the discharging process, leading to a highly reversible redox reaction and the high cycle stability of CoSn2. These findings should pave the way to enhance the performance of all-solid-state FIBs at lower temperatures.
RESUMO
Atomic-resolution scanning transmission electron microscopy (STEM) characterization requires precise tilting of the specimen to a high symmetric zone axis, which is usually processed in reciprocal space by following the diffraction patterns. However, for small-sized nanocrystalline materials, their diffraction patterns are often too faint to guide the tilting process. Here, a simple and effective tilting method is developed based on the diffraction contrast change of the shadow image in the Ronchigram. The misorientation angle of the specimen can be calculated and tilted to the zone axis based on the position of the shadow image with lowest intensity. This method requires no prior knowledge of the sample and the maximum misorientation angle that can be corrected is >±6.9° with sub-mrad accuracy. It operates in real space, without recording the diffraction patterns of the specimens, making it particularly effective for nanocrystalline materials. Combined with the scripting to control the microscope, the sample can be automatically tilted to the zone axis under low dose conditions (<0.17 e- Å- 2 s-1), facilitating the imaging of beam sensitive materials such as zeolites or metal-organic frameworks. This automated tilting method can significantly contribute to the atomic-scale characterization of the nanocrystalline materials by STEM imaging.
RESUMO
Metamaterial has been captivated a popular notion, offering photonic functionalities beyond the capabilities of natural materials. Its desirable functionality primarily relies on well-controlled conditions such as structural resonance, dispersion, geometry, filling fraction, external actuation, etc. However, its fundamental building blocks-meta-atoms-still rely on naturally occurring substances. Here, we propose and validate the concept of gradient and reversible atomic-engineered metamaterials (GRAM), which represents a platform for continuously tunable solid metaphotonics by atomic manipulation. GRAM consists of an atomic heterogenous interface of amorphous host and noble metals at the bottom, and the top interface was designed to facilitate the reversible movement of foreign atoms. Continuous and reversible changes in GRAM's refractive index and atomic structures are observed in the presence of a thermal field. We achieve multiple optical states of GRAM at varying temperature and time and demonstrate GRAM-based tunable nanophotonic devices in the visible spectrum. Further, high-efficiency and programmable laser raster-scanning patterns can be locally controlled by adjusting power and speed, without any mask-assisted or complex nanofabrication. Our approach casts a distinct, multilevel, and reversible postfabrication recipe to modify a solid material's properties at the atomic scale, opening avenues for optical materials engineering, information storage, display, and encryption, as well as advanced thermal optics and photonics.
RESUMO
Chirality-controlled synthesis of carbon nanotubes (CNTs) is one of the ultimate goals in the field of nanotube synthesis. At present, direct synthesis achieving a purity of over 90%, which can be called single-chirality synthesis, has been achieved for only two types of chiralities: (14,4) and (12,6) CNTs. Here, we realized an ultrahigh-purity (â¼95.8%) synthesis of (6,5) CNTs with a trimetallic catalyst NiSnFe. Partial formation of Ni3Sn crystals was found within the NiSnFe nanoparticles. The activation energy for the selective growth of (6,5) CNTs decreased owing to the formation of Ni3Sn crystals, resulting in the high-purity synthesis of (6,5) CNTs. Transmission electron microscopy (TEM) reveals that one-dimensional (1D) crystals of periodic strip lines with 8.8 Å spacing are formed within the as-grown ultrahigh-purity (6,5) CNTs, which are well-matched with the simulated TEM image of closely packed 37 (6,5) CNTs with 2.8 Å intertube distance, indicating the direct formation of chirality-pure (6,5)-CNT bundle structures. The photoluminescence (PL) lifetime increases more than 20 times by the formation of chirality-pure bundle structures of (6,5) CNTs compared to that of isolated (6,5) CNTs. This can be explained by exciton delocalization or intertube excitons within bundle structures of chirality-pure (6,5) CNTs.
RESUMO
Alloying is an effective method for modulating metal nanoclusters to enrich their structural diversity and physicochemical properties. Recent investigations have demonstrated that polyoxometalates (POMs) can act as effective multidentate ligands for silver (Ag) nanoclusters to endow them with synergistic properties, reactivity, catalytic properties, and stability. However, the application of POMs as ligands has been confined predominantly to monometallic nanoclusters. Herein, we report a synthetic method for fabricating surface-exposed gold (Au)-Ag alloy nanoclusters within a ring-shaped POM ([P8W48O184]40-). Reacting an Ag nanocluster stabilized by the ring-shaped POM with Au ions (Au+) was found to substitute several Ag atoms at the core of the nanocluster with Au atoms. The resultant {Au8Ag26} alloy nanocluster demonstrated superior photocatalytic activity and stability compared to the pristine Ag nanocluster in the aerobic oxidation of α-terpinene under visible-light irradiation. These findings provide fundamental insights into the formation and catalytic properties of POM-stabilized alloy nanoclusters and advance exploration into the synthesis and applications of diverse metal nanoclusters.
RESUMO
Scanning Transmission Electron Microscopy (STEM) enables direct determination of atomic arrangements in materials and devices. However, materials such as battery components are weak for electron beam irradiation and low electron doses are required to prevent beam-induced damages. Noise removal is thus essential for precise structural analysis of electron beam sensitive materials at atomic resolution. Total square variation (TSV) regularization is an algorithm that exhibits high noise removal performance. However, the use of the TSV regularization term leads to significant image blurring and intensity reduction. To address these problems, we here propose a new approach adopting L2 norm regularization based on higher-order total variation. An atomic-resolution STEM image can be approximated as a set of smooth curves represented by quadratic functions. Since the third-degree derivative of any quadratic function is 0, total third-degree variation (TTDV) is suitable for a regularization term. The application of TTDV for denoising the atomic-resolution STEM image of CaF2 observed along the [001] zone axis is shown, where we can clearly see the Ca and F atomic columns without compromising image quality.
RESUMO
Although the function and stability of catalysts are known to significantly depend on their dispersion state and support interactions, the mechanism of catalyst loading has not yet been elucidated. To address this gap in knowledge, this study elucidates the mechanism of Pt loading based on a detailed investigation of the interaction between Pt species and localized polarons (Ce3+) associated with oxygen vacancies on CeO2(100) facets. Furthermore, an effective Pt loading method was proposed for achieving high catalytic activity while maintaining the stability. Enhanced dispersibility and stability of Pt were achieved by controlling the ionic interactions between dissolved Pt species and CeO2 surface charges via pH adjustment and reduction pretreatment of the CeO2 support surface. This process resulted in strong interactions between Pt and the CeO2 support. Consequently, the oxygen-carrier performance was improved for CH4 chemical looping reforming reactions. This simple interaction-based loading process enhanced the catalytic performance, allowing the efficient use of noble metals with high performance and small loading amounts.
RESUMO
SnGe4N4O4 was synthesized at high pressure (16 and 20â GPa) and high temperature (1200 and 1500°C) in a large-volume press. Powder X-ray diffraction experiments using synchrotron radiation indicate that the derived samples are mixtures of known and unknown phases. However, the powder X-ray diffraction patterns are not sufficient for structural characterization. Transmission electron microscopy studies reveal crystals of several hundreds of nanometres in size with different chemical composition. Among them, crystals of a previously unknown phase with stoichiometry SnGe4N4O4 were detected and investigated using automated diffraction tomography (ADT), a three-dimensional electron diffraction method. Via ADT, the crystal structure could be determined from single nanocrystals in space group P63mc, exhibiting a nolanite-type structure. This was confirmed by density functional theory calculations and atomic resolution scanning transmission electron microscopy images. In one of the syntheses runs a rhombohedral 6R polytype of SnGe4N4O4 could be found together with the nolanite-type SnGe4N4O4. The structure of this polymorph was solved as well using ADT.
RESUMO
Differential phase contrast scanning transmission electron microscopy (DPC STEM) is a powerful technique for directly visualizing electromagnetic fields inside materials at high spatial resolution. Electric field observation within ferroelectric materials is potentially possible by DPC STEM, but concomitant diffraction contrast hinders the quantitative electric field evaluation. Diffraction contrast is basically caused by the diffraction-condition variation inside a field of view, but in the case of ferroelectric materials, the diffraction conditions can also change with respect to the polarization orientations. To quantitatively observe electric field distribution inside ferroelectric domains, the formation mechanism of diffraction contrast should be clarified in detail. In this study, we systematically simulated diffraction contrast of ferroelectric domains in DPC STEM images based on the dynamical diffraction theory, and clarify the issues for quantitatively observing electric fields inside ferroelectric domains. Furthermore, we conducted experimental DPC STEM observations for a ferroelectric material to confirm the influence of diffraction contrast predicted by the simulations.
RESUMO
Nanoscale defects like grain boundaries (GBs) would introduce local phonon modes and affect the bulk materials' thermal, electrical, optical, and mechanical properties. It is highly desirable to correlate the phonon modes and atomic arrangements for individual defects to precisely understand the structure-property relation. Here we investigated the localized phonon modes of Al2O3 GBs by combination of the vibrational electron energy loss spectroscopy (EELS) in scanning transmission electron microscope and density functional perturbation theory (DFPT). The differences between GB and bulk obtained from the vibrational EELS show that the GB exhibited more active vibration at the energy range of <50 meV and >80 meV, and further DFPT results proved the wide distribution of bond lengths at GB are the main factor for the emergence of local phonon modes. This research provides insights into the phonon-defect relation and would be of importance in the design and application of polycrystalline materials.
RESUMO
One of the main challenges to expand the use of titanium dioxide (titania) as a photocatalyst is related to its large band gap energy and the lack of an atomic scale description of the reduction mechanisms that may tailor the photocatalytic properties. We show that rutile TiO2 single crystals annealed in the presence of atomic hydrogen experience a strong reduction and structural rearrangement, yielding a material that exhibits enhanced light absorption, which extends from the ultraviolet to the near-infrared (NIR) spectral range, and improved photoelectrocatalytic performance. We demonstrate that both magnitudes behave oppositely: heavy/mild plasma reduction treatments lead to large/negligible spectral absorption changes and poor/enhanced (×10) photoelectrocatalytic performance, as judged from the higher photocurrent. To correlate the photoelectrochemical performance with the atomic and chemical structures of the hydrogen-reduced materials, we have modeled the process with in situ scanning tunneling microscopy measurements, which allow us to determine the initial stages of oxygen desorption and the desorption/diffusion of Ti atoms from the surface. This multiscale study opens a door toward improved materials for diverse applications such as more efficient rutile TiO2-based photoelectrocatalysts, green photothermal absorbers for solar energy applications, or NIR-sensing materials.
RESUMO
Grain boundary (GB) fracture is a major mechanism of material failure in polycrystalline ceramics. However, the intricate atomic arrangements of GBs have impeded our understanding of the atomistic mechanisms of these processes. In this study, we investigated the atomic-scale crack propagation behavior of an α-Al2O3 ∑13 grain boundary, using a combination of in situ transmission electron microscopy (TEM) and scanning TEM. The atomic-scale fracture path along the GB core was directly determined by the observation of the atomic structures of the fractured surfaces, which is consistent with density functional theory calculations. We found that the GB fracture can be attributed to the weaker local bonds and a smaller number of bonds along the fracture path. Our findings provide atomistic insights into the mechanisms of crack propagation along GBs, offering significant implications for GB engineering and the toughening of ceramics.
RESUMO
Owing to their remarkable properties, gold nanoparticles are applied in diverse fields, including catalysis, electronics, energy conversion and sensors. However, for catalytic applications of colloidal gold nanoparticles, the trade-off between their reactivity and stability is a significant concern. Here we report a universal approach for preparing stable and reactive colloidal small (~3 nm) gold nanoparticles by using multi-dentate polyoxometalates as protecting agents in non-polar solvents. These nanoparticles exhibit exceptional stability even under conditions of high concentration, long-term storage, heating and addition of bases. Moreover, they display excellent catalytic performance in various oxidation reactions of organic substrates using molecular oxygen as the sole oxidant. Our findings highlight the ability of inorganic multi-dentate ligands with structural stability and robust steric and electronic effects to confer stability and reactivity upon gold nanoparticles. This approach can be extended to prepare metal nanoparticles other than gold, enabling the design of novel nanomaterials with promising applications.
RESUMO
Single and multi-atoms supported on oxide substrates ultimately increase the efficiency of noble metal atom use, and moreover, catalytic activity and selectivity are also improved substantially. However, single and multi-atoms are unstable under catalytic conditions, and these metal atoms spontaneously aggregate and grow into nanoparticles. Catalytic performance is strongly related to local atomic configurations, and hence, it is essential to determine the three-dimensional (3D) atomic structures of multi-atoms on the substrate and their structural dynamics. Here, we show the real-time tracking of the 3D structural evolution of a Pt trimer on TiO2 (110) substrate at a high temperature, using high-spatiotemporal-resolution scanning transmission electron microscopy, where sub-angstrom spatial resolution is maintained, while the temporal resolution reaches 40 milliseconds. With the aid of prior structural knowledge of a Pt trimer for 3D reconstruction, the present method could open the way to characterize in situ atomic-scale structural dynamics, especially meta-stable structural transition.
RESUMO
Herein, we review notable points from observations of electrochemical reactions in a liquid electrolyte by liquid-phase electron microscopy. In situ microscopic observations of electrochemical reactions are urgently required, particularly to solve various battery issues. Battery performance is evaluated by various electrochemical measurements of bulk samples. However, it is necessary to understand the physical/chemical phenomena occurring in batteries to elucidate the reaction mechanisms. Thus, in situ microscopic observation is effective for understanding the reactions that occur in batteries. Herein, we focus on two methods, of the liquid phase (scanning) transmission electron microscopy and liquid phase scanning electron microscopy, and summarize the advantages and disadvantages of both methods.
RESUMO
Grain-boundary atomic structures of crystalline materials have long been believed to be commensurate with the crystal periodicity of the adjacent crystals. In the present study, we experimentally observed a Σ9 grain-boundary atomic structure of a bcc crystal (Fe-3%Si). It is found that the Σ9 grain-boundary structure is largely reconstructed and forms a dense packing of icosahedral clusters in its core. Combining with the detailed theoretical calculations, the Σ9 grain-boundary atomic structure is discovered to be incommensurate with the adjacent crystal structures. The present findings shed new light on the study of stable grain-boundary atomic structures in crystalline materials.
RESUMO
Zeolites are used in industries as catalysts, ion exchangers, and molecular sieves because of their unique porous atomic structures. However, direct observation of zeolitic local atomic structures via electron microscopy is difficult owing to low electron irradiation resistance. Subsequently, their fundamental structure-property relationships remain unclear. A low-electron-dose imaging technique, optimum bright-field scanning transmission electron microscopy (OBF STEM), has recently been developed. It reconstructs images with a high signal-to-noise ratio and a dose efficiency approximately two orders of magnitude higher than that of conventional methods. Here, we performed low-dose atomic-resolution OBF STEM observations of two types of zeolite, effectively visualizing all atomic sites in their frameworks. In addition, we visualized the complex local atomic structure of the twin boundaries in a faujasite (FAU)-type zeolite and Na+ ions with low occupancy in eight-membered rings in a Na-Linde Type A (LTA) zeolite. The results of this study facilitate the characterization of local atomic structures in many electron beam-sensitive materials.