Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(1): 85-100, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34985628

RESUMO

The influence of agricultural tillage technologies on the accumulation and distribution of trace elements in the soil is poorly studied. At the same time, intensive agriculture requires large amounts of fertilizers, growth stimulators, pesticides, and other substances, which can effect the ecological safety of the plant products and soil. This paper represents studying the effect of various agricultural techniques (including resource-saving technologies) on the mobility and profile distribution of Pb, Zn, and Cu in Haplic Chernozem. No significant influence of resource-saving tillage technologies was found on the total Pb content. Contrary, the resource-saving tillage technologies was observed to promote the growth of the total Zn and Cu content depending on the cultivation method (by 26% Zn, 34% Cu at minimal tillage, and 28% for both elements using No-till in Ap horizon). Amongst different applied agrotechnologies, there was no influence found on the profile distribution of total elements content. Only two horizons showed the total Pb content accumulation: biogenic (Ap-A) and carbonate (BC-C) horizon. In contrast, the only biogenic accumulation for Zn was determined. Copper characterizes by even distribution over the soil profile. The use of resource-saving agricultural technologies increases exchangeable fraction of Zn, Pb and Cu in soil almost by 1.5-2.0 times in the Ap horizon compared to moldboard ploughing. Despite the increase in the exchangeable fraction of Zn and Cu, this amount of micronutrients is not enough for adequate plant nutrition. The use of various agricultural technologies at Haplic Chernozem led to changes in the distribution of studied elements' exchangeable fraction over the soil profile. The study results suggested a need to increase the amount of Cu and Zn fertilizers applied to the soil with resource-saving cultivation technologies.


Assuntos
Metais Pesados , Poluentes do Solo , Oligoelementos , Oligoelementos/análise , Solo , Zinco/análise , Fertilizantes , Chumbo , Poluentes do Solo/análise , Metais Pesados/análise
2.
J Sci Food Agric ; 101(6): 2312-2318, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33006376

RESUMO

BACKGROUND: The prolonged use of traditional moldboard ploughing often results in soil degradation and, ultimately, has an impact on national food security. Therefore, the implementation of resource-saving technologies (minimal and No-till) is a promising approach in the development of agriculture, especially in drought regions. The present study reports the results of long-term research on the effect of various tillage methods (moldboard ploughing, minimal tillage and No-till technique) on the nitrogen content of Haplic Chernozem of the European part of Southern Russia. The revealed regularities can be used as a theoretical basis for the effective use of resource-saving technologies, including No-till, in the zone of insufficient moisture. RESULTS: Long-term (59 years) cultivation of winter wheat using traditional moldboard ploughing has decreased the soil organic material (SOM) by 35% and total nitrogen by 32% in the soil. Minimization of tillage, in contrast, recovers the nitrogen potential of the soil in winter wheat agrocenoses. There is a statistically confirmed dependence of the content of SOM and total nitrogen on the tillage method of the upper soil horizon, with no significant effect of the tillage methods on intensity ammonification and nitrification. However, the content of nitrate-nitrogen during resource-saving tillage methods (22.8-24.4 mg kg-1 ) was higher than that after ploughing (20.3 mg kg-1 ) during all the years of the study, indicating the higher content of easily mineralizable nitrogen-containing compounds in the soil after minimal tillage. CONCLUSION: The use of resource-saving tillage technologies under conditions of insufficient moisture stabilizes the nitrogen content in soil and can improve nitrogen nutrition of plants. © 2020 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Nitrogênio/metabolismo , Triticum/crescimento & desenvolvimento , Secas , Nitratos/análise , Nitratos/metabolismo , Nitrificação , Nitrogênio/análise , Federação Russa , Estações do Ano , Solo/química , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA