Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Malar J ; 23(1): 70, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459560

RESUMO

BACKGROUND: Birds chronically infected with avian malaria parasites often show relapses of parasitaemia after latent stages marked by absence of parasites in the peripheral circulation. These relapses are assumed to result from the activation of dormant exo-erythrocytic stages produced during secondary (post-erythrocytic) merogony of avian Plasmodium spp. Yet, there is no morphological proof of persistent or dormant tissue stages in the avian host during latent infections. This study investigated persistence of Plasmodium relictum pSGS1 in birds with latent infections during winter, with the goal to detect presumed persisting tissue stages using a highly sensitive RNAscope® in situ hybridization technology. METHODS: Fourteen domestic canaries were infected with P. relictum pSGS1 by blood-inoculation in spring, and blood films examined during the first 4 months post infection, and during winter and spring of the following year. After parasitaemia was no longer detectable, half of the birds were dissected, and tissue samples investigated for persisting tissue stages using RNAscope ISH and histology. The remaining birds were blood-checked and dissected after re-appearance of parasitaemia, and their tissues equally examined. RESULTS: Systematic examination of tissues showed no exo-erythrocytic stages in birds exhibiting latent infections by blood-film microscopy, indicating absence of dormant tissue stages in P. relictum pSGS1-infected canaries. Instead, RNAscope ISH revealed rare P. relictum blood stages in capillaries of various tissues and organs, demonstrating persistence of the parasites in the microvasculature. Birds examined after re-appearance of parasitemia showed higher numbers of P. relictum blood stages in both capillaries and larger blood vessels, indicating replication during early spring and re-appearance in the peripheral circulation. CONCLUSIONS: The findings suggest that persistence of P. relictum pSGS1 during latent infection is mediated by continuous low-level erythrocytic merogony and possibly tissue sequestration of infected blood cells. Re-appearance of parasitaemia in spring seems to result from increased erythrocytic merogony, therefore representing recrudescence and not relapse in blood-inoculated canaries. Further, the study highlights strengths and limitations of the RNAscope ISH technology for the detection of rare parasite stages in tissues, providing directions for future research on persistence and tissue sequestration of avian malaria and related haemosporidian parasites.


Assuntos
Infecção Latente , Malária Aviária , Plasmodium , Animais , Canários/parasitologia , Malária Aviária/parasitologia , Plasmodium/genética , Aves , Hibridização In Situ , Parasitemia/parasitologia , Recidiva
2.
Acta Trop ; 253: 107174, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452992

RESUMO

Species of subgenus Novyella remain most fragmentarily studied amongst avian malaria agents. Transmission of the recently described Plasmodium (Novyella) homonucleophilum (lineage pSW2) occurs broadly in the Old World, including Europe, however biology of this pathogen remains insufficiently investigated. This study provided the first data on the development of P. homonucleophilum in the experimentally infected Eurasian siskins Spinus spinus exposed by inoculation of infected blood. The parasite strain was isolated from a naturally infected song thrush Turdus philomelos, multiplied in vivo, and inoculated to six Eurasian siskins. The same number of birds were used as negative controls. All exposed birds were susceptible, and the controls remained uninfected during the entire study (172 days). Prepatent period was 8-12 days post exposure (dpe). Maximum parasitaemia reached 50-90 % of infected erythrocytes between 20 and 44 dpe. Then, parasitaemia decreased but remained relatively high during the entire observation. Three of six exposed birds died, indicating high virulence of this infection. The parasitaemia increase coincided with a decline of haematocrit value, indicating anaemia. Polychromasia was evident in all infected birds but not in controls. Body mass of exposed birds increased, coinciding with increased food intake. The latter probably is an adaptation to compensate energy loss of hosts due to the long-lasting parasitism. Exo-erythrocytic stages were not found, suggesting that long-lasting parasitaemia was entirely due to erythrocytic merogony. The lineage pSW2 has been reported broadly in the Old World and is likely a generalist infection. Neglected avian Novyella malaria parasites are worth more attention of researchers due to their cosmopolitan distribution and high virulence.


Assuntos
Malária Aviária , Parasitos , Plasmodium , Aves Canoras , Animais , Malária Aviária/parasitologia , Virulência , Aves Canoras/parasitologia , Biologia
3.
Int J Parasitol Parasites Wildl ; 23: 100905, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38292244

RESUMO

Neglected avian blood parasites of the genus Haemoproteus (Haemoproteidae) have recently attracted attention due to the application of molecular diagnostic tools, which unravelled remarkable diversity of their exo-erythrocytic (or tissue) stages both regarding morphology and organ tropism levels. The development of haemoproteids might result in pathologies of internal organs, however the exo-erythrocytic development (EED) of most Haemoproteus species remains unknown. Seven individual birds - Curruca communis (1) and Phylloscopus trochilus (6) - with high gametocytaemia (between 1% and 24%) of Haemoproteus angustus n. sp. (hCWT7) and Haemoproteus palloris (lineage hWW1) were sampled in Lithuania, and their internal organs were examined extensively by parallel application of histology and chromogenic in situ hybridization methods. Tissue stages were apparently absent, suggesting that the parasitaemia was not accompanied by detectable tissue merogony. Haemoproteus angustus n. sp. was described and characterized morphologically and molecularly. Sexual process and ookinete development of the new species readily occurred in vitro, and a unique character for Haemoproteus parasites was discovered - the obligatory development of several tiny residual bodies, which were associated with intracellular transformation of both macrogametocytes and microgametocytes before their escape from the host cells and formation of gametes. A DNA haplotype network was constructed with lineages that cluster in one clade with the lineage hCWT7. This clade consists of lineages mostly found in Curruca birds, indicating specificity for birds of this genus. The lineage hCWT7 is mainly a parasite of C. communis. Most reports of this lineage came from Turkey, with only a few records in Europe, mostly in birds wintering in Africa where transmission probably occurs. This study highlights unexpected difficulties in the research of EED even when using sensitive molecular diagnostic tools and extends information about transformation in early stages of gametogenesis in haemosporidian parasites.

4.
Int J Parasitol ; 54(1): 1-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37598774

RESUMO

Avian haemosporidians of the genera Plasmodium, Haemoproteus, and Leucocytozoon are common blood parasites in wild birds all over the world. Despite their importance as pathogens potentially compromising host fitness and health, little is known about the exo-erythrocytic development of these parasites, particularly during co-infections which predominate in wildlife. This study aimed to address this issue using Haemoproteus parasites of Fringilla coelebs, a common bird species of the Western Palearctic and host to a variety of haemosporidian parasite lineages. Blood and tissue samples of 20 F. coelebs, positive for haemosporidians by blood film microscopy, were analysed by PCR and sequencing to determine cytochrome b lineages of the parasites. Tissue sections were examined for exo-erythrocytic stages by histology and in situ hybridization applying genus-, species-, and lineage-specific probes which target the 18S rRNA of the parasites. In addition, laser microdissection of tissue stages was performed to identify parasite lineages. Combined molecular results of PCR, laser microdissection, and in situ hybridization showed a high rate of co-infections, with Haemoproteus lineages dominating. Exo-erythrocytic meronts of five Haemoproteus spp. were described for the first known time, including Haemoproteus magnus hCCF6, Haemoproteus fringillae hCCF3, Haemoproteus majoris hCCF5, Haemoproteus sp. hROFI1, and Haemoproteus sp. hCCF2. Merogonic stages were observed in the vascular system, presenting a formerly unknown mode of exo-erythrocytic development in Haemoproteus parasites. Meronts and megalomeronts of these species were distinct regarding their morphology and organ distribution, indicating species-specific patterns of merogony and different host tissue tropism. New pathological aspects of haemoproteosis were reported. Furthermore, phylogenetic analysis of Haemoproteus spp. with regard to their exo-erythrocytic stages points towards separation of non-megalomeront-forming species from megalomeront-forming species, calling for further studies on exo-erythrocytic development of haemosporidian parasites to explore the phylogenetic character of this trait.


Assuntos
Doenças das Aves , Coinfecção , Haemosporida , Passeriformes , Infecções Protozoárias em Animais , Animais , Filogenia , Coinfecção/veterinária , Tropismo ao Hospedeiro , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/parasitologia , Animais Selvagens
5.
Vet Res Commun ; 48(1): 541-546, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37556068

RESUMO

At least three Sarcocystis species (S. falcatula, S. halieti and S. wobeseri-like) have been detected infecting raptorial birds. By histopathology and PCR-sequencing of the ITS1 marker, S. halieti was detected in a bearded vulture (Gypaetus barbatus) and a black kite (Milvus migrans) from the Catalonia region in North Spain. The 241 bp-long sequences obtained from the Sarcocystis organisms detected in both raptors showed 97.5-99.6% and 97.9-100% similarity with those of previously identified S. halieti; also, the phylogenetic trees generated placed the identified sequences together with other sequences of S. halieti available in GenBank. In sum, the description of the bearded vulture as a new intermediate host for S. halieti adds new insights on the complex epidemiology of the genus involving avian hosts.


Assuntos
Sarcocystis , Sarcocistose , Animais , Sarcocystis/genética , Sarcocistose/veterinária , Sarcocistose/epidemiologia , Filogenia , Aves , Espanha
6.
Malar J ; 22(1): 232, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563610

RESUMO

BACKGROUND: The nuclear ribosomal RNA genes of Plasmodium parasites are assumed to evolve according to a birth-and-death model with new variants originating by duplication and others becoming deleted. For some Plasmodium species, it has been shown that distinct variants of the 18S rRNA genes are expressed differentially in vertebrate hosts and mosquito vectors. The central aim was to evaluate whether avian haemosporidian parasites of the genus Haemoproteus also have substantially distinct 18S variants, focusing on lineages belonging to the Haemoproteus majoris and Haemoproteus belopolskyi species groups. METHODS: The almost complete 18S rRNA genes of 19 Haemoproteus lineages of the subgenus Parahaemoproteus, which are common in passeriform birds from the Palaearctic, were sequenced. The PCR products of 20 blood and tissue samples containing 19 parasite lineages were subjected to molecular cloning, and ten clones in mean were sequenced each. The sequence features were analysed and phylogenetic trees were calculated, including sequence data published previously from eight additional Parahaemoproteus lineages. The geographic and host distribution of all 27 lineages was visualised as CytB haplotype networks and pie charts. Based on the 18S sequence data, species-specific oligonucleotide probes were designed to target the parasites in host tissue by in situ hybridization assays. RESULTS: Most Haemoproteus lineages had two or more variants of the 18S gene like many Plasmodium species, but the maximum distances between variants were generally lower. Moreover, unlike in most mammalian and avian Plasmodium species, the 18S sequences of all but one parasite lineage clustered into reciprocally monophyletic clades. Considerably distinct 18S clusters were only found in Haemoproteus tartakovskyi hSISKIN1 and Haemoproteus sp. hROFI1. The presence of chimeric 18S variants in some Haemoproteus lineages indicates that their ribosomal units rather evolve in a semi-concerted fashion than according to a strict model of birth-and-death evolution. CONCLUSIONS: Parasites of the subgenus Parahaemoproteus contain distinct 18S variants, but the intraspecific variability is lower than in most mammalian and avian Plasmodium species. The new 18S data provides a basis for more thorough investigations on the development of Haemoproteus parasites in host tissue using in situ hybridization techniques targeting specific parasite lineages.


Assuntos
Apicomplexa , Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Aves Canoras , Animais , Filogenia , RNA Ribossômico 18S/genética , Genes de RNAr , Doenças das Aves/parasitologia , Apicomplexa/genética , Plasmodium/genética , Mamíferos/genética , Infecções Protozoárias em Animais/parasitologia
7.
Pathogens ; 12(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37513745

RESUMO

Haemoproteus parasites (Apicomplexa, Haemosporida) are widespread pathogens of birds, with a rich genetic (about 1900 lineages) and morphospecies (178 species) diversity. Nonetheless, their life cycles are poorly understood. The exo-erythrocytic stages of three Haemoproteus majoris (widespread generalist parasite) lineages have been previously reported, each in a different bird species. We aimed to further study and compare the development of five H. majoris lineages-hCCF5, hCWT4, hPARUS1, hPHSIB1, and hWW2-in a wider selection of natural avian hosts. A total of 42 individuals belonging to 14 bird species were sampled. Morphospecies and parasitemia were determined by microscopy of blood films, lineages by DNA-barcoding a 478 bp section of the cytochrome b gene, and exo-erythrocytic stages by histology and chromogenic in situ hybridization. The lineage hCWT4 was morphologically characterized as H. majoris for the first time. All lineage infections exclusively featured megalomeronts. The exo-erythrocytic stages found in all examined bird species were similar, particularly for the lineages hCCF5, hPARUS1, and hPHSIB1. Megalomeronts of the lineages hWW2 and hCWT4 were more similar to each other than to the former three lineages. The kidneys and gizzard were most often affected, followed by lungs and intestines; the site of development showed variation depending on the lineage.

8.
Int J Parasitol ; 53(10): 531-543, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263375

RESUMO

Avian haemosporidians are widespread parasites categorized into four families of the order Haemosporida (Apicomplexa). Species of the subgenus Parahaemoproteus (genus Haemoproteus) belong to the Haemoproteidae and are transmitted by Culicoides biting midges. Reports of death due to tissue damage during haemoproteosis in non-adapted birds have raised concerns about these pathogens, especially as their exo-erythrocytic development is known for only a few Haemoproteus spp. More research is needed to better understand the patterns of the parasites' development in tissues and their impact on avian hosts. Yellowhammers Emberiza citrinella (Emberizidae) and common house martins Delichon urbicum (Hirundinidae) were screened for Haemoproteus parasites by microscopic examination of blood films and PCR-based testing. Individuals with single infection were selected for histological investigations. H & E-stained sections were screened for detection and characterization of the exo-erythrocytic stages, while chromogenic in situ hybridization (CISH) and phylogenetic analysis were performed to confirm the Haemoproteus origin and their phylogenetic relationships. Haemoproteus dumbbellus n. sp. was discovered in Emberiza citrinella single-infected with the lineage hEMCIR01. Meronts of H. dumbbellus n. sp. developed in various organs of five of six tested individuals, a pattern which was reported in other Haemoproteus species clustering in the same clade, suggesting this could be a phylogenetic trait. By contrast, in Delichon urbicum infected with the Haemoproteus lineage hDELURB2, which was linked to the more distantly related parasite Haemoproteus hirundinis, only megalomeronts were found in the pectoral muscles of two of six infected individuals. All exo-erythrocytic stages were confirmed to be Haemoproteus parasites by CISH using a Haemoproteus genus-specific probe. While the development of meronts seems to be typical for species of the clade containing H. dumbbellus, further investigations and data from more species are needed to explore whether a phylogenetic pattern occurs in meront or megalomeront formation.


Assuntos
Doenças das Aves , Ceratopogonidae , Haemosporida , Parasitos , Passeriformes , Infecções Protozoárias em Animais , Humanos , Animais , Filogenia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia , Passeriformes/parasitologia , Ceratopogonidae/parasitologia , Citocromos b/genética
9.
Animals (Basel) ; 12(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36077935

RESUMO

Avian haemosporidian parasites (Haemosporida, Apicomplexa) are globally distributed and infect birds of many orders. These pathogens have been much investigated in domestic and wild passeriform birds, in which they are relatively easy to access. In birds belonging to other orders, including owls (order Strigiformes), these parasites have been studied fragmentarily. Particularly little is known about the exo-erythrocytic development of avian haemosporidians. The goal of this study was to gain new knowledge about the parasites infecting owls in Europe and investigate their exo-erythrocytic stages. Tissue samples of 121 deceased owls were collected in Austria and Lithuania, and examined using polymerase chain reactions (PCR), histology, and chromogenic in situ hybridization (CISH). PCR-based diagnostics showed a total prevalence of 73.6%, revealing two previously unreported Haemoproteus and five novel Leucocytozoon lineages. By CISH and histology, meronts of several Leucocytozoon lineages (lASOT06, lSTAL5, lSTAL7) were discovered in the brains, heart muscles, and kidneys of infected birds. Further, megalomeronts of Haemoproteus syrnii (lineage hSTAL2) were discovered. This study contributes new knowledge to a better understanding of the biodiversity of avian haemosporidian parasites infecting owls in Europe, provides information on tissue stages of the parasites, and calls for further research of these under-investigated pathogens relevant to bird health.

10.
Malar J ; 21(1): 14, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986864

RESUMO

BACKGROUND: The order Accipitriformes comprises the largest group of birds of prey with 260 species in four families. So far, 21 haemosporidian parasite species have been described from or reported to occur in accipitriform birds. Only five of these parasite species have been characterized molecular genetically. The first part of this study involved molecular genetic screening of accipitriform raptors from Austria and Bosnia-Herzegovina and the first chromogenic in situ hybridization approach targeting parasites in this host group. The aim of the second part of this study was to summarize the CytB sequence data of haemosporidian parasites from accipitriform raptors and to visualize the geographic and host distribution of the lineages. METHODS: Blood and tissue samples of 183 accipitriform raptors from Austria and Bosnia-Herzegovina were screened for Plasmodium, Haemoproteus and Leucocytozoon parasites by nested PCR, and tissue samples of 23 PCR-positive birds were subjected to chromogenic in situ hybridization using genus-specific probes targeting the parasites' 18S rRNAs. All published CytB sequence data from accipitriform raptors were analysed, phylogenetic trees were calculated, and DNA haplotype network analyses were performed with sequences from clades featuring multiple lineages detected in this host group. RESULTS: Of the 183 raptors from Austria and Bosnia-Herzegovina screened by PCR and sequencing, 80 individuals (44%) were infected with haemosporidian parasites. Among the 39 CytB lineages detected, 18 were found for the first time in the present study. The chromogenic in situ hybridization revealed exo-erythrocytic tissue stages of Leucocytozoon parasites belonging to the Leucocytozoon toddi species group in the kidneys of 14 infected birds. The total number of CytB lineages recorded in accipitriform birds worldwide was 57 for Leucocytozoon, 25 for Plasmodium, and 21 for Haemoproteus. CONCLUSION: The analysis of the DNA haplotype networks allowed identifying numerous distinct groups of lineages, which have not yet been linked to morphospecies, and many of them likely belong to yet undescribed parasite species. Tissue stages of Leucocytozoon parasites developing in accipitriform raptors were discovered and described. The majority of Leucocytozoon and Haemoproteus lineages are specific to this host group, but most Plasmodium lineages were found in birds of other orders. This might indicate local transmission from birds kept at the same facilities (raptor rescue centres and zoos), likely resulting in abortive infections. To clarify the taxonomic and systematic problems, combined morphological and molecular genetic analyses on a wider range of accipitriform host species are needed.


Assuntos
Doenças das Aves/parasitologia , Falconiformes , Haemosporida/isolamento & purificação , Infecções Protozoárias em Animais/parasitologia , Animais , Áustria , Bósnia e Herzegóvina , Haemosporida/classificação , Haemosporida/fisiologia , Filogenia , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Aves Predatórias , Especificidade da Espécie
11.
Animals (Basel) ; 11(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34828005

RESUMO

Haemoproteus species are widespread avian blood parasites belonging to Haemoproteidae (Haemosporida). Blood stages of these pathogens have been relatively well-investigated, though exo-erythrocytic (tissue) stages remain unidentified for the majority of species. However, recent histopathological studies show that haemoproteins markedly affect bird organs during tissue merogony. This study investigated the exo-erythrocytic development of Haemoproteus (Parahaemoproteus) attenuatus (lineage hROBIN1), the common parasite of flycatchers (Muscicapidae). Naturally infected European robins Erithacus rubecula were examined. Parasite species and lineage were identified using microscopic examination of blood stages and DNA sequence analysis. Parasitaemia intensity varied between 0.8 and 26.5% in seven host individuals. Organs of infected birds were collected and processed for histological examination. Tissues stages (meronts) were seen in six birds and were present only in the lungs. The parasites were usually located in groups and were at different stages of maturation, indicating asynchronous exo-erythrocytic development. In most parasitized individuals, 100 meronts were observed in 1 cm2 section of lungs. The largest meronts reached 108 µm in length. Mature meronts contained numerous roundish merozoites of approximately 0.8 µm in diameter. Megalomeronts were not observed. Massive merogony and resulting damage of lungs is a characteristic feature during H. attenuatus infections and might occur in related parasite lineages, causing haemoproteosis.

12.
Animals (Basel) ; 11(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34679845

RESUMO

Species of Haemoproteus (Haemoproteidae, Haemosporida) are common bird pathogens. Recent molecular studies combined with histopathology research have reported development of megalomeronts of these parasites in various organs, sometimes resulting in the death of the avian host. Five Common starlings (Sturnus vulgaris) were found naturally infected with Haemoproteus pastoris lineage hLAMPUR01. The parasite was identified using microscopic examination of blood films and DNA sequences. Infected bird organs were investigated histologically for (i) the presence of exo-erythrocytic stages and (ii) the patterns of development (morphology and localization) in different host individuals. For the first time, megalomeronts of Haemoproteus parasites were seen developing in the brain, while numerous others at different stages of maturation were found in the intestine, pancreas, kidneys, lungs, esophagus, spleen, gizzard, and trachea. Megalomeronts were predominantly roundish or oval, up to 800 µm, they were surrounded by a capsular-like wall and developed asynchronously in the same bird individual. After megalomeront maturation and rupture, a massive infiltration of blood cells occurred, indicating the hemorrhagic processes. Review of available data showed that different Haemoproteus species produce markedly different megalomeronts, morphology of which can probably be predicted using phylogenetic analysis based on partial sequences of cytochrome b gene.

13.
Animals (Basel) ; 11(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070187

RESUMO

Recent studies confirmed that some Hepatozoon-like blood parasites (Apicomplexa) of birds are closely related to the amphibian parasite Lankesterella minima. Little is known about the biology of these pathogens in birds, including their distribution, life cycles, specificity, vectors, and molecular characterization. Using blood samples of 641 birds from 16 species, we (i) determined the prevalence and molecular diversity of Lankesterella parasites in naturally infected birds; (ii) investigated the development of Lankesterella kabeeni in laboratory-reared mosquitoes, Culex pipiens forma molestus and Aedes aegypti; and (iii) tested experimentally the susceptibility of domestic canaries, Serinus canaria, to this parasite. This study combined molecular and morphological diagnostic methods and determined 11% prevalence of Lankesterella parasites in Acrocephalidae birds; 16 Lankesterella lineages with a certain degree of host specificity and two new species (Lankesterella vacuolata n. sp. and Lankesterella macrovacuolata n. sp.) were found and characterized. Lankesterella kabeeni (formerly Hepatozoon kabeeni) was re-described. Serinus canaria were resistant after various experimental exposures. Lankesterella sporozoites rapidly escaped from host cells in vitro. Sporozoites persisted for a long time in infected mosquitoes (up to 42 days post exposure). Our study demonstrated a high diversity of Lankesterella parasites in birds, and showed that several avian Hepatozoon-like parasites, in fact, belong to Lankesterella genus.

14.
Acta Trop ; 218: 105905, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33775628

RESUMO

Haemoproteus species (Haemosporida, Haemoproteidae) are cosmopolitan blood parasites, which have been neglected for over 100-years, but attracted attention recently due to reports of severe and even lethal haemoproteosis in birds and vectors. Approximately 150 species of avian Haemoproteus have been described and named, but molecular data suggest that hundreds of independently evolving molecular lineages might occur, indicating the existence of a remarkable undescribed species diversity. It is timely to develop a methodology, which allow the application of available genetic data in taxonomy of haemosporidians on species levels. This study aimed to test a hypothesis suggesting that DNA haplotype networks might aid in targeting genetically distinct, but still undescribed parasites, and might be used to direct taxonomic studies on haemosporidian species levels. Mainly, we tested a prediction that the lineage hTUPHI01, a common Haemoproteus parasite of Turdus philomelos, might be a new species, which is morphologically similar and genetically closely related to the parasites of Haemoproteus minutus group. Blood samples of T. philomelos naturally infected with this parasite lineage were collected and studied using microscopic examination of blood films and PCR-based methods. Haemoproteus asymmetricus n. sp. was found in this bird, described and characterised molecularly using partial cytochrome b (cytb) sequences. The new species shared some features with parasites of the H. minutus group, as was predicted by the DNA haplotype network. Due to the visualisation of closely related lineages as well as the evaluation of their host and geographic distributions, DNA haplotype networks can be recommended as the helpful methodology, able to direct and speed practical work on parasite species taxonomy and pathogen biodiversity. The combined molecular phylogenetic and morphological approaches showed that the well-supported clades in Bayesian phylogenetic trees based on the partial cytb gene sequences contain morphologically remarkably different Haemoproteus parasite species, which however, share some basic biological features. Phylogenetic analysis can be used for prediction of these basic features in still undescribed parasites. This study calls for further fusion of advanced molecular and microscopy approaches for better understanding haemosporidian parasite biology.


Assuntos
Doenças das Aves/parasitologia , Aves/parasitologia , Haemosporida/citologia , Haemosporida/genética , Infecções Protozoárias em Animais/parasitologia , Animais , Teorema de Bayes , Doenças das Aves/sangue , Aves/sangue , Citocromos b/genética , DNA de Protozoário , Testes Diagnósticos de Rotina , Gametogênese , Genes de Protozoários , Genoma de Protozoário , Haemosporida/classificação , Haplótipos , Tipagem Molecular , Filogenia , Reação em Cadeia da Polimerase
15.
Malar J ; 20(1): 82, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568162

RESUMO

BACKGROUND: Avian malaria parasites are microorganisms parasitizing erythrocytes and various tissues of the birds; they are common and distributed worldwide. These parasites are known to infect birds of different taxa and be the cause of the deaths of birds in the wild and in captivity. The species of parasites with the ability to colonize new territories and infect local non-migratory birds are of particular interest. This scenario is likely in temperate zones of Europe, because of climate change and its contribution in spreading vectors of southern origin, which can be involved in the transmission of malaria parasites. In the present study, a tropical Plasmodium parasite from a naturally infected long-distance migrant bird was isolated and tested for its ability to develop in common species of mosquitoes and European short-distance migrant birds. METHODS: Plasmodium sp. (pFANTAIL01) was isolated on the Curonian spit of the Baltic sea coast from the naturally infected Common rosefinch, Carpodacus erythrinus in June 2019. The parasite was described based on the morphological features of its blood stages, the partial mitochondrial cytochrome b gene and development after experimental infection of birds and mosquitoes. The parasite was inoculated into Eurasian siskins, Carduelis spinus. Parasitaemia, haematocrit and weight of birds were monitored. At the end of the survey, internal organs were collected to study exoerythrocytic stages of this parasite. Experimental infection of mosquitoes Culex pipiens form molestus and Culex quinquefasciatus was applied to study sporogonic development of the parasite. RESULTS: Based on morphological features, the parasite was described as a new species, Plasmodium collidatum n. sp., and attributed to subgenus Novyella. It was revealed that the obtained pFANTAIL01 lineage is a generalist parasite infecting a wide range of avian hosts and most likely is transmitted in South and Southeast (SE) Asia and Oceania. In Europe, this strain was recorded only in adult migratory birds wintering in South Asia. This parasite developed high parasitaemia in experimentally infected siskins and caused 25 % mortality. Exoerythrocytic stages of pFANTAIL01 were found in the lungs, liver, spleen and kidney of the deceased birds. Sporogonic development did not occur in Cx. pipiens form molestus and Cx. quinquefasciatus mosquitoes. CONCLUSIONS: Plasmodium collidatum is a highly virulent for Eurasian siskin and completes its development in these birds, which can be considered as a potential vertebrate host if the transmission of the infection starts occurring in Europe and temperate zones.


Assuntos
Doenças das Aves/parasitologia , Culex/parasitologia , Tentilhões , Malária/veterinária , Plasmodium/classificação , Plasmodium/fisiologia , Animais , Europa (Continente) , Feminino , Malária/parasitologia , Masculino , Federação Russa
16.
Malar J ; 19(1): 335, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933526

RESUMO

BACKGROUND: Haemosporidians (Apicomplexa, Protista) are obligate heteroxenous parasites of vertebrates and blood-sucking dipteran insects. Avian haemosporidians comprise more than 250 species traditionally classified into four genera, Plasmodium, Haemoproteus, Leucocytozoon, and Fallisia. However, analyses of the mitochondrial CytB gene revealed a vast variety of lineages not yet linked to morphospecies. This study aimed to analyse and discuss the data of haemosporidian lineages isolated from birds of the family Turdidae, to visualise host and geographic distribution using DNA haplotype networks and to suggest directions for taxonomy research on parasite species. METHODS: Haemosporidian CytB sequence data from 350 thrushes were analysed for the present study and complemented with CytB data of avian haemosporidians gathered from Genbank and MalAvi database. Maximum Likelihood trees were calculated to identify clades featuring lineages isolated from Turdidae species. For each clade, DNA haplotype networks were calculated and provided with information on host and geographic distribution. RESULTS: In species of the Turdidae, this study identified 82 Plasmodium, 37 Haemoproteus, and 119 Leucocytozoon lineages, 68, 28, and 112 of which are mainly found in this host group. Most of these lineages cluster in the clades, which are shown as DNA haplotype networks. The lineages of the Leucocytozoon clades were almost exclusively isolated from thrushes and usually were restricted to one host genus, whereas the Plasmodium and Haemoproteus networks featured multiple lineages also recovered from other passeriform and non-passeriform birds. CONCLUSION: This study represents the first attempt to summarise information on the haemosporidian parasite lineages of a whole bird family. The analyses allowed the identification of numerous groups of related lineages, which have not been linked to morphologically defined species yet, and they revealed several cases in which CytB lineages were probably assigned to the wrong morphospecies. These taxonomic issues are addressed by comparing distributional patterns of the CytB lineages with data from the original species descriptions and further literature. The authors also discuss the availability of sequence data and emphasise that MalAvi database should be considered an extremely valuable addition to GenBank, but not a replacement.


Assuntos
Doenças das Aves/epidemiologia , Haemosporida/fisiologia , Interações Hospedeiro-Parasita , Infecções Protozoárias em Animais/epidemiologia , Aves Canoras , Animais , Doenças das Aves/parasitologia , Filogeografia , Prevalência , Infecções Protozoárias em Animais/parasitologia
17.
Acta Trop ; 212: 105706, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32956638

RESUMO

Blood parasites of the genus Haemoproteus (Haemosporida, Haemoproteidae) are cosmopolitan and prevalent in birds. Numerous species and lineages of these pathogens have been identified. Some of the infections are lethal in avian hosts mainly due to damage of organs by tissue stages, which remain insufficiently investigated. Several closely related lineages of Haemoproteus majoris, a common parasite of passeriform birds, have been identified. One recent study described megalomeronts of unique morphology in the lineages hPHYBOR04 and hPARUS1 of H. majoris and suggested that the similar tissues stages might also be features in other phylogenetically closely related lineages of the same parasite species. This study aimed to test if (i) megalomeronts are present during the development of the lineage hPHSIB1 of H. majoris and if (ii) they are similar to the other investigated lineages of this species in regard of their morphology and location in organs. One adult wood warbler Phylloscopus sibilatrix, an Afrotropical migrant, naturally infected with H. majoris lineage hPHSIB1 was wild-caught after seasonal spring migration and screened using microscopic examination of blood films and histological sections of organs as well as using PCR-based testing. Bayesian phylogenetic analysis placed the lineages hPHSIB1, hPHYBOR04 and hPARUS1 in one, well-supported clade. Parasitaemia was high (6.5%) in the examined wood warbler, numerous megalomeronts were found in kidneys, and a few in the intestine. Megalomeronts of the lineage hPHSIB1 were morphologically hardly distinguishable from those of lineages hPHYBOR04 and hPARUS1; only negligible differences in the maturation stage of the cytomeres were seen. The kidneys were the main location site of the megalomeronts in all three lineages of this parasite species. This study shows that closely related lineages of H. majoris produce megalomeronts of similar morphology and predominant location in kidneys, while the normal function of this organ may be affected by the presence of numerous large megalomeronts. Megalomeronts of different avian Haemoproteus species are markedly variable in morphology and location, but phylogenetically closely related lineages possess cryptic megalomeronts. This finding suggests that phylogenies based on partial cytb gene could provide information for prediction of patterns of exo-erythrocytic development of closely related Haemoproteus parasites and are worthy of attention in planning haemosporidian parasite tissue stage research.


Assuntos
Doenças das Aves/parasitologia , Haemosporida/crescimento & desenvolvimento , Passeriformes/parasitologia , Infecções Protozoárias em Animais/parasitologia , Animais , Teorema de Bayes , Haemosporida/classificação , Haemosporida/genética , Filogenia
18.
Acta Trop ; 207: 105486, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32330450

RESUMO

Haemoproteus species (Haemosporida, Haemoproteidae) are cosmopolitan bird blood parasites, which often cause relatively benign infections in adapted avian hosts, but severe and even lethal haemoproteosis might develop due to internal organ damage if these pathogens inhabit non-adapted (wrong) hosts. Haemoproteids of swallows (Hirundinidae) remain fragmentarily investigated, with only two haemoproteid species reported in this bird family, which members are cosmopolitan, diverse and inhabit various terrestrial ecosystems, particularly in tropical countries. This study describes and provides molecular characterization of Haemoproteus parahirundinis n. sp. (cytochrome b lineage hHIRUS05), parasite of the most broadly distributed swallow, the Barn swallow Hirundo rustica. Gametocytes, gametes and ookinetes of the new species were examined and compared with other haemoproteids described in swallows. The phylogenetic analysis indicated the existence of a largely undescribed Haemoproteus species diversity in birds of the Hirundinidae and also suggests that all lineages of haemoproteids reported in swallows are transmitted by Culicoides biting midges, but not louse flies of the Hippoboscidae, which often inhabit their nests. The biting midges should be the first targets in vectors research of swallow haemoproteids. This study indicates existence of Haemoproteus species, which are readily distinct based on morphological characters of their blood and sporogonic stages, but differ only negligently in partial cytochrome b sequences, the main markers broadly used in molecular characterization of haemoproteids. That calls for further taxonomic research on haemoproteid in swallows, many species of which are endangered or even threatened with extinction because of habitat degradation.


Assuntos
Haemosporida/genética , Andorinhas/parasitologia , Animais , Doenças das Aves/transmissão , Citocromos b/genética , Haemosporida/classificação , Filogenia , Infecções Protozoárias em Animais/transmissão
19.
Parasit Vectors ; 13(1): 104, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32103784

RESUMO

BACKGROUND: Blood parasites belonging to the Apicomplexa, Trypanosomatidae and Filarioidea are widespread in birds and have been studied extensively. Microscopical examination (ME) of stained blood films remains the gold standard method for the detection of these infections in birds, particularly because co-infections predominate in wildlife. None of the available molecular tools can detect all co-infections at the same time, but ME provides opportunities for this to be achieved. However, fixation, drying and staining of blood films as well as their ME are relatively time-consuming. This limits the detection of infected hosts during fieldwork when captured animals should be released soon after sampling. It is an obstacle for quick selection of donor hosts for parasite experimental, histological and other investigations in the field. This study modified, tested and described the buffy coat method (BCM) for quick diagnostics (~ 20 min/sample) of avian blood parasites. METHODS: Blood of 345 birds belonging to 42 species was collected, and each sample was examined using ME of stained blood films and the buffy coat, which was examined after centrifugation in capillary tubes and after being transferred to objective glass slides. Parasite detection using these methods was compared using sensitivity, specificity, positive and negative predictive values and Cohen's kappa index. RESULTS: Haemoproteus, Leucocytozoon, Plasmodium, microfilariae, Trypanosoma and Lankesterella parasites were detected. BCM had a high sensitivity (> 90%) and specificity (> 90%) for detection of Haemoproteus and microfilariae infections. It was of moderate sensitivity (57%) and high specificity (> 90%) for Lankesterella infections, but of low sensitivity (20%) and high specificity (> 90%) for Leucocytozoon infections. Trypanosoma and Plasmodium parasites were detected only by BCM and ME, respectively. According to Cohen's kappa index, the agreement between two diagnostic tools was substantial for Haemoproteus (0.80), moderate for Lankesterella (0.46) and fair for microfilariae and Leucocytozoon (0.28) infections. CONCLUSIONS: BCM is sensitive and recommended as a quick and reliable tool to detect Haemoproteus, Trypanosoma and microfilariae parasites during fieldwork. However, it is not suitable for detection of species of Leucocytozoon and Plasmodium. BCM is a useful tool for diagnostics of blood parasite co-infections. Its application might be extended to studies of blood parasites in other vertebrates during field studies.


Assuntos
Doenças das Aves/diagnóstico , Doenças das Aves/parasitologia , Buffy Coat/parasitologia , Parasitos/isolamento & purificação , Parasitologia/métodos , Coloração e Rotulagem/métodos , Animais , Animais Selvagens/sangue , Animais Selvagens/parasitologia , Doenças das Aves/sangue , Aves/sangue , Aves/classificação , Aves/parasitologia , Parasitos/classificação , Parasitos/genética , Especificidade da Espécie
20.
Parasit Vectors ; 12(1): 582, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31829271

RESUMO

BACKGROUND: Haemosporidian parasites of the genus Haemoproteus (Haemoproteidae) are widespread and cause haemoproteosis in birds and therefore, their diversity, ecology and evolutionary biology have become subjects of intensive research. However, the vectors and transmission patterns of haemoproteids as well as the epidemiology of haemoproteosis remain insufficiently investigated. Several species of Culicoides (Ceratopogonidae) support complete sporogony of haemoproteids belonging to the subgenus Parahaemoproteus. However, experimental research with these fragile insects is difficult to design in the field, particularly because their abundance markedly depends on seasonality. This is an obstacle for continuous sampling of sufficient numbers of naturally infected or experimentally exposed midges from wildlife. We developed simple methodology for accessing sporogonic development of haemoproteids in laboratory-reared Culicoides nubeculosus. This study aimed to describe the mosaic of methods constituting this methodology, which was applied for investigation of the sporogonic development of Haemoproteus (Parahaemoproteus) pastoris, a widespread parasite of the common starling Sturnus vulgaris. METHODS: The methodology consists of the following main stages: (i) laboratory rearing of C. nubeculosus from the egg stage to adult insects; (ii) selection of naturally infected birds, the donors of mature gametocytes to expose biting midges; (iii) experimental exposure of insects and their laboratory maintenance; and (iv) dissection of exposed insects. Biting midges were exposed to H. pastoris (cytochrome b lineage hLAMPUR01) detected in one naturally infected common starling. Engorged insects were dissected at intervals in order to follow sporogony. Microscopic examination and PCR-based methods were used to identify the sporogonic stages and to confirm the presence of the parasite lineage in infected insects, respectively. RESULTS: Culicoides nubeculosus females were successfully reared and exposed to H. pastoris, which completed sporogonic development 7-9 days post-infection when sporozoites were observed in the salivary glands. CONCLUSIONS: The new methodology is easy to use and non-harmful for birds, providing opportunities to access the sporogonic stages of Parahaemoproteus parasites, which might be used in a broad range of parasitology and genetic studies. Culicoides nubeculosus is an excellent experimental vector of subgenus Parahaemoproteus and is recommended for various experimental studies aiming investigation of sporogony of these pathogens.


Assuntos
Ceratopogonidae/parasitologia , Haemosporida/crescimento & desenvolvimento , Parasitologia/métodos , Animais , Doenças das Aves/parasitologia , Aves , Ceratopogonidae/crescimento & desenvolvimento , Infecções Protozoárias em Animais/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA