Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 21(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37999389

RESUMO

Periodontitis is a microbially-induced inflammation of the periodontium that is characterized by the destruction of the periodontal ligament (PDL) and alveolar bone and constitutes the principal cause of teeth loss in adults. Periodontal tissue regeneration can be achieved through guided tissue/bone regeneration (GTR/GBR) membranes that act as a physical barrier preventing epithelial infiltration and providing adequate time and space for PDL cells and osteoblasts to proliferate into the affected area. Electrospun nanofibrous scaffolds, simulating the natural architecture of the extracellular matrix (ECM), have attracted increasing attention in periodontal tissue engineering. Carrageenans are ideal candidates for the development of novel nanofibrous GTR/GBR membranes, since previous studies have highlighted the potential of carrageenans for bone regeneration by promoting the attachment and proliferation of osteoblasts. Herein, we report the development of bi- and tri-layer nanofibrous GTR/GBR membranes based on carrageenans and other biocompatible polymers for the regeneration of periodontal tissue. The fabricated membranes were morphologically characterized, and their thermal and mechanical properties were determined. Their periodontal tissue regeneration potential was investigated through the evaluation of cell attachment, biocompatibility, and osteogenic differentiation of human PDL cells seeded on the prepared membranes.


Assuntos
Nanofibras , Osteogênese , Adulto , Humanos , Carragenina/farmacologia , Sulfatos , Membranas Artificiais , Periodonto , Regeneração Óssea
2.
Mar Drugs ; 20(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35621965

RESUMO

Marine biopolymers, abundantly present in seaweeds and marine animals, feature diverse structures and functionalities, and possess a wide range of beneficial biological activities. Characterized by high biocompatibility and biodegradability, as well as unique physicochemical properties, marine biopolymers are attracting a constantly increasing interest for the development of advanced systems for applications in the biomedical field. The development of electrospinning offers an innovative technological platform for the production of nonwoven nanofibrous scaffolds with increased surface area, high encapsulation efficacy, intrinsic interconnectivity, and structural analogy to the natural extracellular matrix. Marine biopolymer-based electrospun nanofibrous scaffolds with multifunctional characteristics and tunable mechanical properties now attract significant attention for biomedical applications, such as tissue engineering, drug delivery, and wound healing. The present review, covering the literature up to the end of 2021, highlights the advancements in the development of marine biopolymer-based electrospun nanofibers for their utilization as cell proliferation scaffolds, bioadhesives, release modifiers, and wound dressings.


Assuntos
Nanofibras , Animais , Bandagens , Biopolímeros/farmacologia , Nanofibras/química , Engenharia Tecidual , Alicerces Teciduais/química
3.
Pest Manag Sci ; 75(8): 2142-2147, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30632273

RESUMO

BACKGROUND: Mosquitoes are hematophagous insects of major public health concern, serving as vectors of many diseases. Available products for personal protection against mosquitoes lack adequate efficacy and in most cases need to be reapplied or replaced frequently. In recent years, the encapsulation of the active repellents in various matrices has arisen as an alternative method for the development of new-generation repellent systems. The aim of the present study was to explore the potential of functional micro/nanofibrous matrices as systems for the sustained release of the highly volatile insect-repellent citronella oil. RESULTS: Micro/nanofibrous single- and triple-layer systems incorporating citronella oil as the active agent were developed via the electrospinning technique using the low-cost, non-toxic, biodegradable polymers cellulose acetate and polyvinylpyrrolidone. All the micro/nanofiber systems produced exhibited prolonged release of citronella oil and a high repellent activity in laboratory bioassays against the mosquito Aedes albopictus for at least 4 weeks. CONCLUSION: Considering the high volatility of the embedded repellent, the present study demonstrates the strong potential of the micro/nanofibrous matrices to act as carriers of highly volatile repellents for an effective and sustained protection from mosquitoes. © 2019 Society of Chemical Industry.


Assuntos
Aedes , Repelentes de Insetos , Controle de Mosquitos , Nanofibras , Óleos de Plantas , Animais , Controle de Mosquitos/instrumentação , Controle de Mosquitos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA