Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cytotherapy ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38739074

RESUMO

BACKGROUND: In recent years, dental pulp stromal cells (DPSCs) have emerged as a promising therapeutic approach for Parkinson's disease (PD), owing to their inherent neurogenic potential and the lack of neuroprotective treatments for this condition. However, uncertainties persist regarding the efficacy of these cells in an undifferentiated state versus a neuronally-induced state. This study aims to delineate the distinct therapeutic potential of uninduced and neuronally-induced DPSCs in a rodent model of PD induced by 6-Hydroxydopamine (6-OHDA). METHODS: DPSCs were isolated from human teeth, characterized as mesenchymal stromal cells, and induced to neuronal differentiation. Neuronal markers were assessed before and after induction. DPSCs were transplanted into the substantia nigra pars compacta (SNpc) of rats 7 days following the 6-OHDA lesion. In vivo tracking of the cells, evaluation of locomotor behavior, dopaminergic neuron survival, and the expression of essential proteins within the dopaminergic system were conducted 7 days postgrafting. RESULTS: Isolated DPSCs exhibited typical characteristics of mesenchymal stromal cells and maintained a normal karyotype. DPSCs consistently expressed neuronal markers, exhibiting elevated expression of ßIII-tubulin following neuronal induction. Results from the animal model showed that both DPSC types promoted substantial recovery in dopaminergic neurons, correlating with enhanced locomotion. Additionally, neuronally-induced DPSCs prevented GFAP elevation, while altering DARPP-32 phosphorylation states. Conversely, uninduced DPSCs reduced JUN levels. Both DPSC types mitigated the elevation of glycosylated DAT. CONCLUSIONS: Our results suggested that uninduced DPSCs and neuronally-induced DPSCs exhibit potential in reducing dopaminergic neuron loss and improving locomotor behavior, but their underlying mechanisms differ.

2.
Exp Brain Res ; 241(5): 1289-1298, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37000202

RESUMO

Parkinson disease (PD) is a chronic neurodegenerative disorder characterized by a progressive loss of dopamine neurons in the substantia nigra pars compacta (SNpc). In the last years, a growing interest to study the relationship between metabolic dysfunction and neurodegenerative disease like PD has emerged. This study aimed to evaluate the occurrence of possible changes in metabolic homeostasis due to intranigral rotenone administration, a neurotoxin that damages dopaminergic neurons leading to motor impairments mimicking those that happen in PD. Male Wistar rats were distributed into two groups: sham (n = 10) or rotenone (n = 10). Sham group received, bilaterally, within the SNpc, 1 µL of vehicle dimethyl-sulfoxide (DMSO) and the experimental group was bilaterally injected with 1 µL of rotenone (12 µg/µL). Twenty-four hours after the stereotaxic surgeries, the animals underwent the open field test followed by subsequent peripheral blood and cerebrospinal fluid (CSF) samples collection for biochemical testing. The results showed that rotenone was able to replicate the typical motor behavior impairment seen in the disease, i.e., decrease in locomotion (P = 0.05) and increase in immobility (P = 0.01) with a strong correlation (r = - 0.85; P < 0.0001) between them. In addition, it was demonstrated that this model is able to decrease plasmatic total-cholesterol (P = 0.04) and HDL-cholesterol (P = 0.007) potentially impacting peripheral metabolism. Hence, it was revealed a potential ability to reproduce relevant metabolic dysfunctions like hyperglycemia which could be explained by acute and systemic mitochondrial rotenone toxicity and SNpc nigral toxicity. Such mechanisms may still be responsible for the potential occurrence of CSF-hyperglycemia (d = 0.7). Since intranigral rotenone is an early phase model of PD, the present results open a new road for studies aiming to investigate metabolic changes in PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Ratos , Animais , Masculino , Doença de Parkinson/metabolismo , Rotenona/toxicidade , Rotenona/metabolismo , Ratos Wistar , Doenças Neurodegenerativas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Colesterol/metabolismo , Modelos Animais de Doenças
3.
Eur J Pharmacol ; 891: 173722, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33159932

RESUMO

Melatonin MT1 and MT2 receptors are expressed in the glomerular layer of the olfactory bulb (OB); however, the role of these receptors has not been evaluated until now. Considering the association of the OB with olfactory and depressive disorders in Parkinson's disease (PD), we sought to investigate the involvement of melatonin receptors in these non-motor disturbances in an intranigral 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD. We demonstrate the presence of functional melatonin receptors in dopaminergic neurons of the glomerular layer. Local administration of melatonin (MLT, 1 µg/µl), luzindole (LUZ, 5 µg/µl) or the MT2-selective receptor drug 4-P-PDOT (5 µg/µl) reversed the depressive-like behavior elicited by 6-OHDA. Sequential administration of 4-P-PDOT and MLT (5 µg/µl, 1 µg/µl) promoted additive antidepressant-like effects. In the evaluation of olfactory discrimination, LUZ induced an olfactory impairment when associated with the nigral lesion-induced impairment. Thus, our results suggest that melatonin MT2 receptors expressed in the glomerular layer are involved in depressive-like behaviors and in olfactory function associated with PD.


Assuntos
Anosmia/metabolismo , Comportamento Animal , Transtorno Depressivo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Bulbo Olfatório/metabolismo , Transtornos Parkinsonianos/metabolismo , Receptor MT2 de Melatonina/metabolismo , Animais , Anosmia/etiologia , Anosmia/fisiopatologia , Anosmia/psicologia , Comportamento Animal/efeitos dos fármacos , Transtorno Depressivo/etiologia , Transtorno Depressivo/fisiopatologia , Transtorno Depressivo/psicologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Melatonina/farmacologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/fisiopatologia , Percepção Olfatória/efeitos dos fármacos , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/psicologia , Ratos Wistar , Receptor MT2 de Melatonina/efeitos dos fármacos , Transdução de Sinais , Olfato/efeitos dos fármacos , Natação , Tetra-Hidronaftalenos/farmacologia , Triptaminas/farmacologia
4.
Sci Rep ; 9(1): 1898, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760786

RESUMO

Parkinson's disease (PD) is a chronic disorder that presents a range of premotor signs, such as sleep disturbances and cognitive decline, which are key non-motor features of the disease. Increasing evidence of a possible association between sleep disruption and the neurodegenerative process suggests that sleep impairment could produce a detectable metabolic signature on the disease. In order to integrate neurocognitive and metabolic parameters, we performed untargeted and targeted metabolic profiling of the rotenone PD model in a chronic sleep restriction (SR) (6 h/day for 21 days) condition. We found that SR combined with PD altered several behavioural (reversal of locomotor activity impairment; cognitive impairment; delay of rest-activity rhythm) and metabolic parameters (branched-chain amino acids, tryptophan pathway, phenylalanine, and lipoproteins, pointing to mitochondrial impairment). If combined, our results bring a plethora of parameters that represents reliable early-phase PD biomarkers which can easily be measured and could be translated to human studies.


Assuntos
Biomarcadores/metabolismo , Doença de Parkinson/patologia , Transtornos do Sono-Vigília/diagnóstico , Aminoácidos de Cadeia Ramificada/sangue , Animais , Área Sob a Curva , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Doença Crônica , Análise Discriminante , Modelos Animais de Doenças , Análise dos Mínimos Quadrados , Masculino , Espectrometria de Massas , Metaboloma/efeitos dos fármacos , Doença de Parkinson/etiologia , Curva ROC , Ratos , Ratos Wistar , Rotenona/toxicidade , Transtornos do Sono-Vigília/metabolismo
6.
Mol Neurobiol ; 56(2): 1082-1095, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29869198

RESUMO

Olfactory impairments and depressive behavior are commonly reported by individuals with Parkinson's disease (PD) being observed before motor symptoms. The mechanisms underlying these clinical manifestations are not fully elucidated. However, the imbalance in dopaminergic neurotransmission seems to play an important role in this context. In patients and animal models of PD, an increase in the dopaminergic interneurons of the glomerular layer in olfactory bulb (OB-gl) is observed, which may contribute to the olfactory impairment. In addition, neuronal imbalance in OB is related to depressive symptoms, as demonstrated by chemical olfactory bulbectomy. In view of that, we hypothesized that a reduction in the number or density of dopaminergic neurons present in OB could promote an olfactory improvement and, in contrast, would accentuate the depressive-like behaviors in the 6-hydroxydopamine (6-OHDA) model of PD. Therefore, we performed single or double injections of 6-OHDA within the substantia nigra pars compacta (SNpc) and/or in the OB-gl. We observed that, after 7 days, the group with nigral lesion exhibited olfactory impairment, as well as the group with the lesion in the OB-gl. However, the combination of the lesions prevented the occurrence of hyposmia. In relation to depressive-like behaviors, we observed that the SNpc injury promoted depressive-like behavior, being accentuated after a double injury. Our results demonstrated the importance of the dopaminergic neurons of the OB-gl in different non-motor features of PD, since the selective reduction of these periglomerular neurons was able to induce olfactory impairment and depressive-like behaviors.


Assuntos
Comportamento Animal/efeitos dos fármacos , Depressão/induzido quimicamente , Bulbo Olfatório/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Masculino , Bulbo Olfatório/lesões , Bulbo Olfatório/patologia , Doença de Parkinson/patologia , Ratos Wistar , Substância Negra/efeitos dos fármacos , Substância Negra/patologia
7.
Sleep Sci ; 12(3): 196-202, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31890096

RESUMO

Excitotoxicity has been related to play a crucial role in Parkinson's disease (PD) pathogenesis. Pedunculopontine tegmental nucleus (PPT) represents one of the major sources of glutamatergic afferences to nigrostriatal pathway and putative reciprocal connectivity between these structures may exert a potential influence on rapid eye movement (REM) sleep control. Also, PPT could be overactive in PD, it seems that dopaminergic neurons are under abnormally high levels of glutamate and consequently might be more vulnerable to neurodegeneration. We decided to investigate the neuroprotective effect of riluzole administration, a N-methyl-D-aspartate (NMDA) receptor antagonist, in rats submitted simultaneously to nigrostrial rotenone and 24h of REM sleep deprivation (REMSD). Our findings showed that blocking NMDA glutamatergic receptors in the SNpc, after REMSD challenge, protected the dopaminergic neurons from rotenone lesion. Concerning rotenone-induced hypolocomotion, riluzole reversed this impairment in the control groups. Also, REMSD prevented the occurrence of rotenone-induced motor impairment as a result of dopaminergic supersensitivity. In addition, higher Fluoro Jade C (FJC) staining within the SNpc was associated with decreased cognitive performance observed in rotenone groups. Such effect was counteracted by riluzole suggesting the occurrence of an antiapoptotic effect. Moreover, riluzole did not rescue cognitive impairment impinged by rotenone, REMSD or their combination. These data indicated that reductions of excitotoxicity, by riluzole, partially protected dopamine neurons from neuronal death and appeared to be effective in relieve specific rotenone-induce motor disabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA