Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(7): 217, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38806748

RESUMO

Plant pathogens with their abundance are harmful and cause huge damage to different agricultural crops and economy of a country as well as lead towards the shortage of food for humans. For their management, the utilization of entomopathogenic fungi is an eco-friendly technique, sustainable to the environment, safe for humans and has promising effect over chemical-based pesticides. This process requires a biochemical mechanism, including the production of enzymes, toxins, and other metabolites that facilitate host infection and invasion. Essential enzymes such as chitinase, proteinase, and lipase play a direct role in breaking down the host cuticle, the primary barrier to EPF (Entomopathogenic Fungi) infection. Additionally, secondary metabolites such as destruxins in Metarhizium, beauvericin in Beauveria, hirsutellides in Hirsutella, isarolides in Isaria, cordyols in Cordyceps, and vertihemipterins in Verticillium, among others, act both directly and indirectly to disable the defense mechanisms of insect hosts, thereby accelerating the EPF infection process. The chemical composition of these secondary metabolites varies, ranging from simple non-peptide pigments such as oosporine to highly complex piperazine derivatives such as vertihemiptellides. The biocontrol efficacy of EPF is extensively studied, with numerous fungal strains commercially available on a large scale for managing arthropod pests. This review emphasizes the role of proteins and enzymes against crop pathogens, detailing their mode of action, and describing the metabolites from entomopathogenic fungi and their biological activities. In doing so, these findings contribute to establishing a symbiotic equilibrium between agricultural productivity and environmental conservation.


Assuntos
Produtos Agrícolas , Fungos , Insetos , Controle Biológico de Vetores , Animais , Beauveria/metabolismo , Agentes de Controle Biológico/metabolismo , Cordyceps/metabolismo , Proteção de Cultivos/métodos , Produtos Agrícolas/parasitologia , Fungos/metabolismo , Insetos/microbiologia , Metarhizium/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Metabolismo Secundário
2.
Environ Sci Pollut Res Int ; 31(12): 18656-18671, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347363

RESUMO

Contamination of the environment due to speedup of anthropogenic activities has become a serious threat to modern humanity. Among the contaminants, the new emerging concern is the heavy metal (HM) contamination in the environment. Because the persistence and harmfulness of heavy metals affect the ecosystem and the health of plants, animals, and humans, they are the most toxic substances in the environment. Among them, Arsenic (As) emerged as major environmental constraint leading to enormous negative effects on the plant, animal, and human health. Even in minute quantity, As is known to cause various critical diseases in humans and toxicity in plants. Research was performed to observe the capability of plant growth-promoting strains of bacteria in enhancing Zea mays (L.) growth in arsenic polluted soil. Total 30 bacterial strains were isolated from the polluted soils, screened for plant growth promotion potential and arsenic tolerance. Eighteen isolates showed resistance to different levels of sodium arsenate (ranging from 0 to 50 mM) in agar plate using LB media. Of 18 isolates, 83.3% produced IAA, methyl red, and hydrogen cyanide; 55.5% exhibited catalase activity; 61.1% showed siderophore production; 88.8% showed phosphate solubilization; and 44.4% showed oxidase, Voges proskauer activity, and KOH solubility. The most efficient isolates SR3, SD5, and MD3 with significant arsenic tolerance and plant growth-promoting (PGP) activity were examined via sequencing of amplified 16S rRNA gene. Isolates of bacteria, i.e., SR3, SD5, and MD3, showing multiple PGP-traits were identified as Bacillus pumilus (NCBI accession number: OR459628), Paenibacillus faecalis (NCBI accession number: OR461560), and Pseudochrobactrum asaccharolyticum (NCBI accession number: OR458922), respectively. Maize seeds treated with these PGPR strains were grown in pots contaminated with 50 ppm and 100 ppm sodium arsenate. Compared to untreated arsenic stressed plants, bacterial inoculation P. asaccharolyticum (MD3) resulted 20.54%, 18.55%, 33.45%, 45.08%, and 48.55% improvement of photosynthetic pigments (carotenoid content, chlorophyll content, stomatal conductance (gs), substomatal CO2, and photosynthetic rate), respectively. Principal component analysis explained that first two components were more than 96% of the variability for each tested parameter. The results indicate that in comparison to other isolates, P. asaccharolyticum isolate can be used as efficient agent for improving maize growth under arsenic polluted soil.


Assuntos
Arseniatos , Arsênio , Metais Pesados , Poluentes do Solo , Humanos , Zea mays , Ecossistema , RNA Ribossômico 16S/genética , Bactérias/genética , Solo , Plantas/genética , Microbiologia do Solo , Poluentes do Solo/toxicidade , Raízes de Plantas/microbiologia
3.
Environ Res ; 249: 118291, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301757

RESUMO

Organophosphorus adulteration in the environment creates terrestrial and aquatic pollution. It causes acute and subacute toxicity in plants, humans, insects, and animals. Due to the excessive use of organophosphorus pesticides, there is a need to develop environmentally friendly, economical, and bio-based strategies. The microbiomes, that exist in the soil, can reduce the devastating effects of organophosphates. The use of cell-free enzymes and yeast is also an advanced method for the degradation of organophosphates. Plant-friendly bacterial strains, that exist in the soil, can help to degrade these contaminants by oxidation-reduction reactions, enzymatic breakdown, and adsorption. The bacterial strains mostly from the genus Bacillus, Pseudomonas, Acinetobacter, Agrobacterium, and Rhizobium have the ability to hydrolyze the bonds of organophosphate compounds like profenofos, quinalphos, malathion, methyl-parathion, and chlorpyrifos. The native bacterial strains also promote the growth abilities of plants and help in detoxification of organophosphate residues. This bioremediation technique is easy to use, relatively cost-effective, very efficient, and ensures the safety of the environment. This review covers the literature gap by describing the major effects of organophosphates on the ecosystem and their bioremediation by using native bacterial strains.


Assuntos
Biodegradação Ambiental , Ecossistema , Compostos Organofosforados , Compostos Organofosforados/toxicidade , Compostos Organofosforados/metabolismo , Compostos Organofosforados/química , Resíduos de Praguicidas/toxicidade , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Poluentes do Solo/toxicidade , Poluentes do Solo/química , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA