Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 15(6): e1900346, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32319741

RESUMO

Escherichia coli is engineered for γ-aminobutyrate (GABA) production in glucose minimal medium. For this, overexpression of mutant glutamate decarboxylase (GadB) and mutant glutamate/GABA antiporter (GadC), as well as deletion of GABA transaminase (GabT), are accomplished. In addition, the carbon flux to the tricarboxylic acid cycle is engineered by the overexpression of gltA, ppc, or both. The overexpression of citrate synthase (CS), encoded by gltA, increases GABA productivity, as expected. Meanwhile, the overexpression of phosphoenolpyruvate carboxylase (PPC) causes a decrease in the rate of glucose uptake, resulting in a decrease in GABA production. The phenotypes of the strains are characterized by 13 C metabolic flux analysis (13 C MFA). The results reveal that CS overexpression increases glycolysis and anaplerotic reaction rates, as well as the citrate synthesis rate, while PPC overexpression causes little changes in metabolic fluxes, but reduces glucose uptake rate. The engineered strain produces 1.2 g L-1 of GABA from glucose. Thus, by using 13 C MFA, important information is obtained for designing metabolically engineered strains for efficient GABA production.


Assuntos
Aminobutiratos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Análise do Fluxo Metabólico/métodos , Ciclo do Carbono , Ciclo do Ácido Cítrico , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Glutamato Descarboxilase/genética , Ácido Glutâmico , Glicólise , Proteínas de Membrana/genética , Redes e Vias Metabólicas/genética
2.
J Agric Food Chem ; 68(11): 3466-3473, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32079399

RESUMO

Resveratrol, a phytoalexin produced by plants, has several beneficial effects in humans. It can be produced using Escherichia coli by introducing only three heterologous genes: TAL, 4CL, and STS. However, the resveratrol synthesis pathway requires two precursors, tyrosine and acetyl-CoA, which are produced by two branched central metabolic pathways. Therefore, overexpression of these genes in E. coli results in the production of only trace amounts of resveratrol. In this study, we attempted to produce resveratrol via coculture of two engineered strains in which the two metabolic pathways are activated. The first strain was engineered to produce p-coumaric acid using tyrosine as a precursor, which can be synthesized by the pentose phosphate pathway. The second strain produced resveratrol by combining p-coumaric acid from the first strain and malonyl-CoA synthesized from acetyl-CoA, which is produced by the glycolytic pathway. In total, 55.7 mg/L of resveratrol was produced from 20 g/L of glucose via coculture of these two strains in glucose minimal medium without any supplements. The metabolic fluxes in each of the strains producing resveratrol were successfully investigated by 13C metabolic flux analysis. The results showed that the balance between the citric acid cycle and the malonyl-CoA supply node was important for resveratrol production.


Assuntos
Escherichia coli , Análise do Fluxo Metabólico , Técnicas de Cocultura , Escherichia coli/genética , Humanos , Engenharia Metabólica , Resveratrol
3.
Microb Cell Fact ; 18(1): 170, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601271

RESUMO

BACKGROUND: Most microorganisms have evolved to maximize growth rate, with rapid consumption of carbon sources from the surroundings. However, fast growing phenotypes usually feature secretion of organic compounds. For example, E. coli mainly produced acetate in fast growing condition such as glucose rich and aerobic condition, which is troublesome for metabolic engineering because acetate causes acidification of surroundings, growth inhibition and decline of production yield. The overflow metabolism can be alleviated by reducing glucose uptake rate. RESULTS: As glucose transporters or their subunits were knocked out in E. coli, the growth and glucose uptake rates decreased and biomass yield was improved. Alteration of intracellular metabolism caused by the mutations was investigated with transcriptome analysis and 13C metabolic flux analysis (13C MFA). Various transcriptional and metabolic perturbations were identified in the sugar transporter mutants. Transcription of genes related to glycolysis, chemotaxis, and flagella synthesis was downregulated, and that of gluconeogenesis, Krebs cycle, alternative transporters, quorum sensing, and stress induced proteins was upregulated in the sugar transporter mutants. The specific production yields of value-added compounds (enhanced green fluorescent protein, γ-aminobutyrate, lycopene) were improved significantly in the sugar transporter mutants. CONCLUSIONS: The elimination of sugar transporter resulted in alteration of global gene expression and redirection of carbon flux distribution, which was purposed to increase energy yield and recycle carbon sources. When the pathways for several valuable compounds were introduced to mutant strains, specific yield of them were highly improved. These results showed that controlling the sugar uptake rate is a good strategy for ameliorating metabolite production.


Assuntos
Carbono/metabolismo , Escherichia coli/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Glucose/metabolismo , Engenharia Metabólica/métodos , Proteínas Recombinantes/biossíntese , Ciclo do Carbono , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Fluorescência Verde/biossíntese , Licopeno/metabolismo , Análise do Fluxo Metabólico/métodos , Ácido gama-Aminobutírico/biossíntese
4.
Biotechnol Biofuels ; 12: 207, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497067

RESUMO

BACKGROUND: Formate converted from CO2 reduction has great potential as a sustainable feedstock for biological production of biofuels and biochemicals. Nevertheless, utilization of formate for growth and chemical production by microbial species is limited due to its toxicity or the lack of a metabolic pathway. Here, we constructed a formate assimilation pathway in Escherichia coli and applied adaptive laboratory evolution to improve formate utilization as a carbon source in sugar-free conditions. RESULTS: The genes related to the tetrahydrofolate and serine cycles from Methylobacterium extorquens AM1 were overexpressed for formate assimilation, which was proved by the 13C-labeling experiments. The amino acids detected by GC/MS showed significant carbon labeling due to biomass production from formate. Then, 150 serial subcultures were performed to screen for evolved strains with improved ability to utilize formate. The genomes of evolved mutants were sequenced and the mutations were associated with formate dehydrogenation, folate metabolism, and biofilm formation. Last, 90 mg/L of ethanol production from formate was achieved using fed-batch cultivation without addition of sugars. CONCLUSION: This work demonstrates the effectiveness of the introduction of a formate assimilation pathway, combined with adaptive laboratory evolution, to achieve the utilization of formate as a carbon source. This study suggests that the constructed E. coli could serve as a strain to exploit formate and captured CO2.

5.
ACS Synth Biol ; 8(6): 1276-1283, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31074964

RESUMO

Caprolactam is a monomer used for the synthesis of nylon-6, and a recombinant microbial strain for biobased production of nylon-6 was recently developed. An intracellular biosensor for caprolactam can facilitate high-throughput metabolic engineering of recombinant microbial strains. Because of the mixed production of caprolactam and valerolactam in the recombinant strain, a caprolactam biosensor should be highly specific for caprolactam. However, a highly specific caprolactam sensor has not been reported. Here, we developed an artificial riboswitch that specifically responds to caprolactam. This riboswitch was prepared using a coupled in vitro- in vivo selection strategy with a heterogeneous pool of RNA aptamers obtained from in vitro selection to construct a riboswitch library used in in vivo selection. The caprolactam riboswitch successfully discriminated caprolactam from valerolactam. Moreover, the riboswitch was activated by 3.36-fold in the presence of 50 mM caprolactam. This riboswitch enabled caprolactam-dependent control of cell growth, which will be useful for improving caprolactam production and is a valuable tool for metabolic engineering.


Assuntos
Caprolactama/metabolismo , Espaço Intracelular/metabolismo , Engenharia Metabólica/métodos , Riboswitch/genética , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Técnicas Biossensoriais , Caprolactama/química , Escherichia coli/genética , Escherichia coli/metabolismo , Ensaios de Triagem em Larga Escala , Espaço Intracelular/química , Técnica de Seleção de Aptâmeros
6.
Microb Cell Fact ; 18(1): 57, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890173

RESUMO

BACKGROUND: Acetate is one of promising feedstocks owing to its cheap price and great abundance. Considering that tyrosine production is gradually shifting to microbial production method, its production from acetate can be attempted to further improve the economic feasibility of its production. RESULTS: Here, we engineered a previously reported strain, SCK1, for efficient production of tyrosine from acetate. Initially, the acetate uptake and gluconeogenic pathway were amplified to maximize the flux toward tyrosine. As flux distribution between glyoxylate and TCA cycles is critical for efficient precursor supplementation, the activity of the glyoxylate cycle was precisely controlled by expression of isocitrate lyase gene under different-strength promoters. Consequently, the engineered strain with optimal flux distribution produced 0.70 g/L tyrosine with 20% of the theoretical maximum yield which are 1.6-fold and 1.9-fold increased values of the parental strain. CONCLUSIONS: Tyrosine production from acetate requires precise tuning of the glyoxylate cycle and we obtained substantial improvements in production titer and yield by synthetic promoters and 5' untranslated regions (UTRs). This is the first demonstration of tyrosine production from acetate. Our strategies would be widely applicable to the production of various chemicals from acetate in future.


Assuntos
Ácido Acético/metabolismo , Ciclo do Ácido Cítrico/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glioxilatos/metabolismo , Tirosina/biossíntese , Gluconeogênese , Engenharia Metabólica , Tirosina/metabolismo
7.
Sci Rep ; 9(1): 5337, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926903

RESUMO

We investigated the intracellular metabolic fluxes of protein kinase CK2-activating (Cα OE) cells and role of lactate dehydrogenase A (LDHA) as a contributor of tumorigenesis after reprogrammed glucose metabolism. Facilitated aerobic glycolysis was confirmed via isotope tracer analysis, in which 13C6-Glc or 13C5-Gln was added to the media, following which metabolites converted from Cα OE cells were identified. We found a greater decrease in cell survival, colony-forming ability, migration, and Cα OE cell invasion under glucose (Glc)-depletion conditions than under glutamine (Gln)-depletion conditions. Cancer cell migration and invasion increased due to LDHA elevation of the altered metabolic axis driven by activated CK2. FX11 treatment and LDHA knockdown suppressed migration and invasion through ROS generation, but this was partially reversed by the antioxidant N-acetylcysteine (NAC). Moreover, LDHA inhibition decreased tumor growth in a mouse xenograft model transplanted with Cα OE cells. Finally, we concluded that LDHA is an excellent metabolic target for tumor therapy, based on CK2α derived aerobic glycolysis.


Assuntos
Caseína Quinase II/metabolismo , Glucose/metabolismo , Lactato Desidrogenases/metabolismo , Neoplasias/metabolismo , Aerobiose , Animais , Caseína Quinase II/genética , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ciclo do Ácido Cítrico , Glicólise , Humanos , Camundongos , Neoplasias/patologia , Ácido Pirúvico/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Enzyme Microb Technol ; 106: 114-118, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28859805

RESUMO

Enterobacter aerogenes was metabolically engineered for acetoin production. To remove the pathway enzymes that catalyzed the formation of by-products, the three genes encoding a lactate dehydrogenase (ldhA) and two 2,3-butanediol dehydrogenases (budC, and dhaD), respectively, were deleted from the genome. The acetoin production was higher under highly aerobic conditions. However, an extracellular glucose oxidative pathway in E. aerogenes was activated under the aerobic conditions, resulting in the accumulation of 2-ketogluconate. To decrease the accumulation of this by-product, the gene encoding a glucose dehydrogenase (gcd) was also deleted. The resulting strain did not produce 2-ketogluconate but produced significant amounts of acetoin, with concentration reaching 71.7g/L with 2.87g/L/h productivity in fed-batch fermentation. This result demonstrated the importance of blocking the glucose oxidative pathway under highly aerobic conditions for acetoin production using E. aerogenes.


Assuntos
Acetoína/metabolismo , Enterobacter aerogenes/metabolismo , Engenharia Metabólica/métodos , Aerobiose , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos/microbiologia , Enterobacter aerogenes/genética , Fermentação , Deleção de Genes , Genes Bacterianos , Gluconatos/metabolismo , Glucose Desidrogenase/genética , Glucose Desidrogenase/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5 , Redes e Vias Metabólicas/genética
9.
Metab Eng ; 38: 401-408, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725264

RESUMO

Biosynthesis of isoprenoids via the 1-deoxy-D-xylulose-5-phosphate (DXP) pathway requires equimolar glyceraldehyde 3-phosphate and pyruvate to divert carbon flux toward the products of interest. Here, we demonstrate that precursor balancing is one of the critical steps for the production of isoprenoids in Escherichia coli. First, the implementation of the synthetic lycopene production pathway as a model system and the amplification of the native DXP pathway were accomplished using synthetic constitutive promoters and redesigned 5'-untranslated regions (5'-UTRs). Next, fine-controlled precursor balancing was investigated by tuning phosphoenolpyruvate synthase (PpsA) or glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The results showed that tuning-down of gapA improved the specific lycopene content by 45% compared to the overexpression of ppsA. The specific lycopene content in the strains with down-regulated gapA increased by 97% compared to that in the parental strain. Our results indicate that gapA is the best target for precursor balancing to increase biosynthesis of isoprenoids.


Assuntos
Vias Biossintéticas/genética , Carotenoides/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Engenharia Metabólica/métodos , Terpenos/metabolismo , Escherichia coli , Proteínas de Escherichia coli , Melhoramento Genético/métodos , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Licopeno , Redes e Vias Metabólicas/genética , Terpenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA