Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 14: 643483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220447

RESUMO

Riboflavin, also known as vitamin B2, isfound in foods and is used as a dietary supplement. Its deficiency (also called ariboflavinosis) results in some skin lesions and inflammations, such as stomatitis, cheilosis, oily scaly skin rashes, and itchy, watery eyes. Various therapeutic effects of riboflavin, such as anticancer, antioxidant, anti-inflammatory, and anti-nociceptive effects, are well known. Although some studies have identified the clinical effect of riboflavin on skin problems, including itch and inflammation, its underlying mechanism of action remains unknown. In this study, we investigated the molecular mechanism of the effects of riboflavin on histamine-dependent itch based on behavioral tests and electrophysiological experiments. Riboflavin significantly reduced histamine-induced scratching behaviors in mice and histamine-induced discharges in single-nerve fiber recordings, while it did not alter motor function in the rotarod test. In cultured dorsal root ganglion (DRG) neurons, riboflavin showed a dose-dependent inhibitory effect on the histamine- and capsaicin-induced inward current. Further tests wereconducted to determine whether two endogenous metabolites of riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), have similar effects to those of riboflavin. Here, FMN, but not FAD, significantly inhibited capsaicin-induced currents and itching responses caused by histamine. In addition, in transient receptor potential vanilloid 1 (TRPV1)-transfected HEK293 cells, both riboflavin and FMN blocked capsaicin-induced currents, whereas FAD did not. These results revealed that riboflavin inhibits histamine-dependent itch by modulating TRPV1 activity. This study will be helpful in understanding how riboflavin exerts antipruritic effects and suggests that it might be a useful drug for the treatment of histamine-dependent itch.

2.
Ocul Surf ; 22: 72-79, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34311077

RESUMO

PURPOSE: To evaluate the role of substance P (SP)/neurokinin-1 receptor (NK1R) system in the regulation of pathologic corneal lymphangiogenesis in dry eye disease (DED). METHODS: Immunocytochemistry, angiogenesis assay, and Western blot analysis of human dermal lymphatic endothelial cells (HDLECs) were conducted to assess the involvement of SP/NK1R system in lymphangiogenesis. DED was induced in wild-type C57BL/6 J mice using controlled-environment chamber without scopolamine. Immunohistochemistry, corneal fluorescein staining, and phenol red thread test were used to evaluate the effect of SP signaling blockade in the corneal lymphangiogenesis. The expression of lymphangiogenic factors in the corneal and conjunctival tissues of DED mouse model was quantified by real-time polymerase chain reaction. RESULTS: NK1R expression and pro-lymphangiogenic property of SP/NK1R system in HDLECs were confirmed by Western blot analysis and angiogenesis assay. Blockade of SP signaling with L733,060, an antagonist of NK1R, or NK1R-targeted siRNA significantly inhibited lymphangiogenesis and expression of vascular endothelial growth factor (VEGF) receptor 3 stimulated by SP in HDLECs. NK1R antagonist also suppressed pathological corneal lymphangiogenesis and ameliorated the clinical signs of dry eye in vivo. Furthermore, NK1R antagonist effectively suppressed the lymphangiogenic factors, including VEGF-C, VEGF-D, and VEGF receptor 3 in the corneal and conjunctival tissues of DED. CONCLUSIONS: SP/NK1R system promotes lymphangiogenesis in vitro and NK1R antagonism suppresses pathologic corneal lymphangiogenesis in DED in vivo.


Assuntos
Síndromes do Olho Seco , Linfangiogênese , Animais , Células Endoteliais , Camundongos , Camundongos Endogâmicos C57BL , Receptores da Neurocinina-1 , Substância P , Fator A de Crescimento do Endotélio Vascular , Receptor 3 de Fatores de Crescimento do Endotélio Vascular
3.
Sci Rep ; 11(1): 6909, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767351

RESUMO

We compared the therapeutic effects of topical 8-oxo-2'-deoxyguanosine (8-oxo-dG) and corticosteroid in a murine ocular alkali burn model. (n = 128) The corneal alkali burn model was established by applying 0.1 N sodium hydroxide (NaOH), followed by treatment with 8-oxo-dG, 0.1% fluorometholone (FML), 1% prednisolone acetate (PDE), or phosphate-buffered saline (PBS) twice daily. One week later, the clinical and histological status of the cornea were assessed. Transcript levels of inflammatory cytokines and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase as well as the levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the cornea, were assayed. The 8-oxo-dG and PDE groups showed marked improvements in corneal integrity and clarity when compared with the PBS group (each p < 0.01). The numbers of cells stained for neutrophil elastase and F4/80-positive inflammatory cells were significantly decreased, with levels of interleukin(IL)-1ß, IL-6, tumor necrosis factor(TNF)-α, and total ROS/RNS amounts markedly reduced in the 8-oxo-dG, FML, and PDE groups (each p < 0.05). Levels of NADPH oxidase type 2 and 4 were substantially more repressed in the 8-oxo-dG-treated group than in the PDE-treated group (each p < 0.05). Topical 8-oxo-dG showed excellent therapeutic effects that were comparable with those treated with topical PDE in a murine ocular alkali burn model.


Assuntos
8-Hidroxi-2'-Desoxiguanosina/uso terapêutico , Queimaduras Químicas/tratamento farmacológico , Lesões da Córnea/tratamento farmacológico , Queimaduras Oculares/induzido quimicamente , Fluormetolona/uso terapêutico , Glucocorticoides/uso terapêutico , Administração Oftálmica , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Camundongos Endogâmicos BALB C , Hidróxido de Sódio
4.
Theranostics ; 10(26): 12111-12126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204332

RESUMO

Rationale: Psoriasis is a chronic inflammatory disease caused by a complex interplay between the immune and nervous systems with recurrent scaly skin plaques, thickened stratum corneum, infiltration and activation of inflammatory cells, and itch. Despite an increasing availability of immune therapies, they often have adverse effects, high costs, and dissociated effects on inflammation and itch. Activation of sensory neurons innervating the skin and TRPV1 (transient receptor potential vanilloid 1) are emerging as critical components in the pathogenesis of psoriasis, but little is known about their endogenous inhibitors. Recent studies have demonstrated that resolvins, endogenous lipid mediators derived from omega-3 fatty acids, are potent inhibitors of TRP channels and may offer new therapies for psoriasis without known adverse effects. Methods: We used behavioral, electrophysiological and biochemical approaches to investigate the therapeutic effects of resolvin D3 (RvD3), a novel family member of resolvins, in a preclinical model of psoriasis consisting of repeated topical applications of imiquimod (IMQ) to murine skin, which provokes inflammatory lesions that resemble human psoriasis. Results: We report that RvD3 specifically reduced TRPV1-dependent acute pain and itch in mice. Mechanistically, RvD3 inhibited capsaicin-induced TRPV1 currents in dissociated dorsal root ganglion (DRG) neurons via the N-formyl peptide receptor 2 (i.e. ALX/FPR2), a G-protein coupled receptor. Single systemic administration of RvD3 (2.8 mg/kg) reversed itch after IMQ, and repeated administration largely prevented the development of both psoriasiform itch and skin inflammation with concomitant decreased in calcitonin gene-related peptide (CGRP) expression in DRG neurons. Accordingly, specific knockdown of CGRP in DRG was sufficient to prevent both psoriasiform itch and skin inflammation similar to the effects following RvD3 administration. Finally, we elevated the translational potential of this study by showing that RvD3 significantly inhibited capsaicin-induced TRPV1 activity and CGRP release in human DRG neurons. Conclusions: Our findings demonstrate a novel role for RvD3 in regulating TRPV1/CGRP in mouse and human DRG neurons and identify RvD3 and its neuronal pathways as novel therapeutic targets to treat psoriasis.


Assuntos
Ácidos Graxos Insaturados/farmacologia , Dor/tratamento farmacológico , Prurido/tratamento farmacológico , Psoríase/tratamento farmacológico , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Biópsia , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/toxicidade , Células Cultivadas , Modelos Animais de Doenças , Ácidos Graxos Insaturados/uso terapêutico , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/imunologia , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/imunologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dor/induzido quimicamente , Dor/imunologia , Dor/patologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Prurido/induzido quimicamente , Prurido/imunologia , Prurido/patologia , Psoríase/complicações , Psoríase/imunologia , Psoríase/patologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/inervação , Canais de Cátion TRPV/metabolismo
5.
Biomolecules ; 10(11)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167484

RESUMO

Local anesthetics (LAs) can completely block nociception by inhibiting voltage-gated sodium channels (VGSCs), and thus, blocking action potentials (APs) within sensory neurons. As one of the several LAs, eugenol is used for dental pain treatment. It reportedly features multiple functions in regulating diverse ion channels. This study aimed to investigate the long-lasting analgesic effect of eugenol alone, as well as that of the combination of eugenol as a noxious-heat-sensitive transient receptor potential vanilloid 1 (TRPV1) channel agonist and a permanently charged sodium channel blocker (QX-314), on neuronal excitability in trigeminal ganglion (TG) neurons. Eugenol alone increased inward current in a dose-dependent manner in capsaicin-sensitive TG neurons. Eugenol also inhibited the VGSC current and AP. These effects were reversed through wash-out. The combination of eugenol and QX-314 was evaluated in the same manner. The combination completely inhibited the VGSC current and AP. However, these effects were not reversed and were continuously blocked even after wash-out. Taken together, our results suggest that, in contrast to the effect of eugenol alone, the combination of eugenol and QX-314 irreversibly and selectively blocked VGSCs in TG neurons expressing TRPV1.


Assuntos
Eugenol/farmacologia , Lidocaína/análogos & derivados , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Gânglio Trigeminal/citologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Interações Medicamentosas , Lidocaína/farmacologia , Masculino , Neurônios/citologia , Nociceptividade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
6.
Mediators Inflamm ; 2018: 1782719, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245586

RESUMO

Dexmedetomidine, an α2-adrenoceptor agonist, is widely used as a sedative and analgesic agent in a number of clinical applications. However, little is known about the mechanism by which it exerts its analgesic effects on the trigeminal system. Two types of voltage-gated sodium channels, Nav1.7 and Nav1.8, as well as α2-adrenoceptors are expressed in primary sensory neurons of the trigeminal ganglion (TG). Using whole-cell patch-clamp recordings, we investigated the effects of dexmedetomidine on voltage-gated sodium channel currents (INa) via α2-adrenoceptors in dissociated, small-sized TG neurons. Dexmedetomidine caused a concentration-dependent inhibition of INa in small-sized TG neurons. INa inhibition by dexmedetomidine was blocked by yohimbine, a competitive α2-adrenoceptor antagonist. Dexmedetomidine-induced inhibition of INa was mediated by G protein-coupled receptors (GPCRs) as this effect was blocked by intracellular perfusion with the G protein inhibitor GDPß-S. Our results suggest that the INa inhibition in small-sized TG neurons, mediated by the activation of Gi/o protein-coupled α2-adrenoceptors, might contribute to the analgesic effects of dexmedetomidine in the trigeminal system. Therefore, these new findings highlight a potential novel target for analgesic drugs in the orofacial region.


Assuntos
Dexmedetomidina/farmacologia , Receptores Adrenérgicos alfa 2/metabolismo , Gânglio Trigeminal/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gânglio Trigeminal/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos
7.
Cornea ; 37(10): 1311-1317, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29923862

RESUMO

PURPOSE: To evaluate the therapeutic effects of topical 8-oxo-2'-deoxyguanosine (8-oxo-dG) on experimental ocular chemical injury models. METHODS: We created ocular chemical injury models with 8-week-old BALB/c mice (n = 70) by applying 100% ethanol; the mice were then treated with 8-oxo-dG eye drops 10 and 5 mg/mL and phosphate-buffered saline (PBS) twice daily. After 7 days, clinical findings such as corneal integrity, clarity, and neovascularization were assessed. Histology, immunohistochemistry findings, and inflammatory cytokine levels using real-time polymerase chain reactions in the corneas of the mice were also analyzed. RESULTS: Topical application of 8-oxo-dG eye drops resulted in a significant improvement of epithelial defects and clarity, dose dependently (each P < 0.001). Inflammatory cell infiltration and corneal stromal edema were also decreased in the 8-oxo-dG-treated mice compared with PBS-treated controls, based on hematoxylin and eosin staining. The expressions of F4/80 and neutrophil elastase-positive inflammatory cells and IL-1 and TNF-α cytokine levels were significantly reduced in the 8-oxo-dG group compared with the PBS group (each P < 0.01). CONCLUSIONS: Topical 8-oxo-dG application showed an excellent therapeutic effect in ocular chemical injury models by suppressing inflammation.


Assuntos
Queimaduras Químicas/tratamento farmacológico , Lesões da Córnea/tratamento farmacológico , Desoxiguanosina/análogos & derivados , Queimaduras Oculares/tratamento farmacológico , Soluções Oftálmicas/uso terapêutico , 8-Hidroxi-2'-Desoxiguanosina , Análise de Variância , Animais , Queimaduras Químicas/metabolismo , Queimaduras Químicas/patologia , Córnea/patologia , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/patologia , Neovascularização da Córnea/patologia , Substância Própria/patologia , Citocinas/metabolismo , Desoxiguanosina/uso terapêutico , Modelos Animais de Doenças , Epitélio Corneano/patologia , Etanol , Queimaduras Oculares/metabolismo , Queimaduras Oculares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
8.
Neurosci Bull ; 34(1): 22-41, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29333591

RESUMO

The voltage-gated Na+ channel subtype Nav1.7 is important for pain and itch in rodents and humans. We previously showed that a Nav1.7-targeting monoclonal antibody (SVmab) reduces Na+ currents and pain and itch responses in mice. Here, we investigated whether recombinant SVmab (rSVmab) binds to and blocks Nav1.7 similar to SVmab. ELISA tests revealed that SVmab was capable of binding to Nav1.7-expressing HEK293 cells, mouse DRG neurons, human nerve tissue, and the voltage-sensor domain II of Nav1.7. In contrast, rSVmab showed no or weak binding to Nav1.7 in these tests. Patch-clamp recordings showed that SVmab, but not rSVmab, markedly inhibited Na+ currents in Nav1.7-expressing HEK293 cells. Notably, electrical field stimulation increased the blocking activity of SVmab and rSVmab in Nav1.7-expressing HEK293 cells. SVmab was more effective than rSVmab in inhibiting paclitaxel-induced mechanical allodynia. SVmab also bound to human DRG neurons and inhibited their Na+ currents. Finally, potential reasons for the differential efficacy of SVmab and rSVmab and future directions are discussed.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Canal de Sódio Disparado por Voltagem NAV1.7/imunologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Animais , Biotina/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Feminino , Gânglios Espinais/citologia , Células HEK293 , Humanos , Hibridomas/química , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/química , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/uso terapêutico , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA