Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(17): 11404-11415, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629449

RESUMO

High-performance and low operating voltage are becoming increasingly significant device parameters to meet the needs of future integrated circuit (IC) processors and ensure their energy-efficient use in upcoming mobile devices. In this study, we suggest a hybrid dual-gate switching device consisting of the vertically stacked junction and metal-insulator-semiconductor (MIS) gate structure, named J-MISFET. It shows excellent device performances of low operating voltage (<0.5 V), drain current ON/OFF ratio (∼4.7 × 105), negligible hysteresis window (<0.5 mV), and near-ideal subthreshold slope (SS) (60 mV/dec), making it suitable for low-power switching operation. Furthermore, we investigated the switchable NAND/NOR logic gate operations and the photoresponse characteristics of the J-MISFET under the small supply voltage (0.5 V). To advance the applications further, we successfully demonstrated an integrated optoelectronic security logic system comprising 2-electric inputs (for encrypted data) and 1-photonic input signal (for password key) as a hardware security device for data protection. Thus, we believe that our J-MISFET, with its heterogeneous hybrid gate structures, will illuminate the path toward future device configurations for next-generation low-power electronics and multifunctional security logic systems in a data-driven society.

2.
Adv Mater ; : e2314274, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647521

RESUMO

A gate stack that facilitates a high-quality interface and tight electrostatic control is crucial for realizing high-performance and low-power field-effect transistors (FETs). However, when constructing conventional metal-oxide-semiconductor structures with two-dimensional (2D) transition metal dichalcogenide channels, achieving these requirements becomes challenging due to inherent difficulties in obtaining high-quality gate dielectrics through native oxidation or film deposition. Here, a gate-dielectric-less device architecture of van der Waals Schottky gated metal-semiconductor FETs (vdW-SG MESFETs) using a molybdenum disulfide (MoS2) channel and surface-oxidized metal gates such as nickel and copper is reported. Benefiting from the strong SG coupling, these MESFETs operate at remarkably low gate voltages, <0.5 V. Notably, they also exhibit Boltzmann-limited switching behavior featured by a subthreshold swing of ≈60 mV dec-1 and negligible hysteresis. These ideal FET characteristics are attributed to the formation of a Fermi-level (EF) pinning-free gate stack at the Schottky-Mott limit. Furthermore, authors experimentally and theoretically confirm that EF depinning can be achieved by suppressing both metal-induced and disorder-induced gap states at the interface between the monolithic-oxide-gapped metal gate and the MoS2 channel. This work paves a new route for designing high-performance and energy-efficient 2D electronics.

3.
ACS Nano ; 18(11): 8546-8554, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456657

RESUMO

Monoclinic semiconducting ß-Ga2O3 has drawn attention, particularly because its thin film could be achieved via mechanical exfoliation from bulk crystals, which is analogous to van der Waals materials' behavior. For the transistor devices with exfoliated ß-Ga2O3, the channel direction becomes [010] for in-plane electron transport, which changes to vertical [100] near the source/drain (S/D) contact. Hence, anisotropic transport behavior is certainly worth to study but rarely reported. Here we achieve the vertical [100] direction electron mobility of 4.18 cm2/(V s) from Pt/ß-Ga2O3 Schottky diodes with various thickness via radio frequency-transmission line method (RF-TLM), which is recently developed. The specific contact resistivity (ρc) could also be estimated from RF-TLM, to be 4.72 × 10-5 Ω cm2, which is quite similar to the value (5.25 × 10-5 Ω cm2) from conventional TLM proving the validity of RF-TLM. We also fabricate metal-semiconductor field-effect transistors (MESFETs) to study anisotropic transport behavior and contact resistance (RC). RC-free [010] in-plane mobility appears as high as maximum ∼67 cm2/(V s), extracted from total resistance in MESFETs.

4.
Neural Comput ; 36(4): 744-758, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38457753

RESUMO

Recent advancements in deep learning have achieved significant progress by increasing the number of parameters in a given model. However, this comes at the cost of computing resources, prompting researchers to explore model compression techniques that reduce the number of parameters while maintaining or even improving performance. Convolutional neural networks (CNN) have been recognized as more efficient and effective than fully connected (FC) networks. We propose a column row convolutional neural network (CRCNN) in this letter that applies 1D convolution to image data, significantly reducing the number of learning parameters and operational steps. The CRCNN uses column and row local receptive fields to perform data abstraction, concatenating each direction's feature before connecting it to an FC layer. Experimental results demonstrate that the CRCNN maintains comparable accuracy while reducing the number of parameters and compared to prior work. Moreover, the CRCNN is employed for one-class anomaly detection, demonstrating its feasibility for various applications.

5.
ACS Appl Mater Interfaces ; 16(9): 12095-12105, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38384197

RESUMO

Two-dimensional transition metal dichalcogenides (2D TMDCs) are considered promising alternatives to Si as channel materials because of the possibility of retaining their superior electronic transport properties even at atomic body thicknesses. However, the realization of high-performance 2D TMDC field-effect transistors remains a challenge owing to Fermi-level pinning (FLP) caused by gap states and the inherent high Schottky barrier height (SBH) within the metal contact and channel layer. This study demonstrates that high-quality van der Waals (vdW) heterojunction-based contacts can be formed by depositing semimetallic TiS2 onto monolayer (ML) MoS2. After confirming the successful formation of a TiS2/ML MoS2 heterojunction, the contact properties of vdW semimetal TiS2 were thoroughly investigated. With clean interfaces of the TiS2/ML MoS2 heterojunctions, atomic-layer-deposited TiS2 can induce gap-state saturation and suppress FLP. Consequently, compared with conventional evaporated metal electrodes, the TiS2/ML MoS2 heterojunctions exhibit a lower SBH of 8.54 meV and better contact properties. This, in turn, substantially improves the overall performance of the device, including its on-current, subthreshold swing, and threshold voltage. Furthermore, we believe that our proposed strategy for vdW-based contact formation will contribute to the development of 2D materials used in next-generation electronics.

6.
Nat Commun ; 15(1): 129, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167379

RESUMO

Memristor-integrated passive crossbar arrays (CAs) could potentially accelerate neural network (NN) computations, but studies on these devices are limited to software-based simulations owing to their poor reliability. Herein, we propose a self-rectifying memristor-based 1 kb CA as a hardware accelerator for NN computations. We conducted fully hardware-based single-layer NN classification tasks involving the Modified National Institute of Standards and Technology database using the developed passive CA, and achieved 100% classification accuracy for 1500 test sets. We also investigated the influences of the defect-tolerance capability of the CA, impact of the conductance range of the integrated memristors, and presence or absence of selection functionality in the integrated memristors on the image classification tasks. We offer valuable insights into the behavior and performance of CA devices under various conditions and provide evidence of the practicality of memristor-integrated passive CAs as hardware accelerators for NN applications.

7.
Nat Nanotechnol ; 18(12): 1439-1447, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37500777

RESUMO

Recent advances in two-dimensional semiconductors, particularly molybdenum disulfide (MoS2), have enabled the fabrication of flexible electronic devices with outstanding mechanical flexibility. Previous approaches typically involved the synthesis of MoS2 on a rigid substrate at a high temperature followed by the transfer to a flexible substrate onto which the device is fabricated. A recurring drawback with this methodology is the fact that flexible substrates have a lower melting temperature than the MoS2 growth process, and that the transfer process degrades the electronic properties of MoS2. Here we report a strategy for directly synthesizing high-quality and high-crystallinity MoS2 monolayers on polymers and ultrathin glass substrates (thickness ~30 µm) at ~150 °C using metal-organic chemical vapour deposition. By avoiding the transfer process, the MoS2 quality is preserved. On flexible field-effect transistors, we achieve a mobility of 9.1 cm2 V-1 s-1 and a positive threshold voltage of +5 V, which is essential for reducing device power consumption. Moreover, under bending conditions, our logic circuits exhibit stable operation while phototransistors can detect light over a wide range of wavelengths from 405 nm to 904 nm.

8.
Adv Mater ; 35(48): e2304599, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37506305

RESUMO

Extensive study on 2D van der Waals (vdW) heterojunctions has primarily focused on PN diodes for fast-switching photodetection, while achieving the same from 2D channel phototransistors is rare despite their other advantages. Here, a high-speed phototransistor featuring a type III junction between p-MoTe2 channel and n-SnS2 top layer is designed. The photodetecting device operates with a basis of negative photoresponse (NPR), which originates from the recombination of photoexcited electrons in n-SnS2 and accumulated holes in the p-MoTe2 channel. For the NPR to occur, high-energy photons capable of exciting SnS2 (band gap ≈2.2 eV) are found to be effective because lower-energy photons simply penetrate the SnS2 top layer only to excite MoTe2 , leading to normal positive photoresponse (PPR) which is known to be slow due to the photogating effects. The NPR transistor showcases 0.5 ms fast photoresponses and a high responsivity over 5000 A W-1 . More essentially, such carrier recombination mechanism is clarified with three experimental evidences. The phototransistor is finally modified with Au contact on n-SnS2 , to be a more practical device displaying voltage output. Three different photo-logic states under blue, near infrared (NIR), and blue-NIR mixed photons are demonstrated using the voltage signals.

9.
Sci Adv ; 9(29): eadh9770, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37467332

RESUMO

Graphene, with superior electrical tunabilities, has arisen as a multifunctional insertion layer in vertically stacked devices. Although the role of graphene inserted in metal-semiconductor junctions has been well investigated in quasi-static charge transport regime, the implication of graphene insertion at ultrahigh frequencies has rarely been considered. Here, we demonstrate the diode operation of vertical Pt/n-MoSe2/graphene/Au assemblies at ~200-GHz cutoff frequency (fC). The electric charge modulation by the inserted graphene becomes essentially frozen above a few GHz frequencies due to graphene quantum capacitance-induced delay, so that the Ohmic graphene/MoSe2 junction may be transformed to a pinning-free Schottky junction. Our diodes exhibit much lower total capacitance than devices without graphene insertion, deriving an order of magnitude higher fC, which clearly demonstrates the merit of graphene at high frequencies.

10.
Nano Lett ; 23(8): 3144-3151, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37026614

RESUMO

Group IV monochalcogenides have recently shown great potential for their thermoelectric, ferroelectric, and other intriguing properties. The electrical properties of group IV monochalcogenides exhibit a strong dependence on the chalcogen type. For example, GeTe exhibits high doping concentration, whereas S/Se-based chalcogenides are semiconductors with sizable bandgaps. Here, we investigate the electrical and thermoelectric properties of γ-GeSe, a recently identified polymorph of GeSe. γ-GeSe exhibits high electrical conductivity (∼106 S/m) and a relatively low Seebeck coefficient (9.4 µV/K at room temperature) owing to its high p-doping level (5 × 1021 cm-3), which is in stark contrast to other known GeSe polymorphs. Elemental analysis and first-principles calculations confirm that the abundant formation of Ge vacancies leads to the high p-doping concentration. The magnetoresistance measurements also reveal weak antilocalization because of spin-orbit coupling in the crystal. Our results demonstrate that γ-GeSe is a unique polymorph in which the modified local bonding configuration leads to substantially different physical properties.

11.
Adv Mater ; 35(22): e2300478, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940281

RESUMO

Negative-capacitance field-effect transistors (NC-FETs) have gathered enormous interest as a way to reduce subthreshold swing (SS) and overcome the issue of power dissipation in modern integrated circuits. For stable NC behavior at low operating voltages, the development of ultrathin ferroelectrics (FE), which are compatible with the industrial process, is of great interest. Here, a new scalable ultrathin ferroelectric polymer layer is developed based on trichloromethyl (CCl3 )-terminated poly(vinylidene difluoride-co-trifloroethylene) (P(VDF-TrFE)) to achieve the state-of-the-art performance of NC-FETs. The crystalline phase of 5-10 nm ultrathin P(VDF-TrFE) is prepared on AlOX by a newly developed brush method, which enables an FE/dielectric (DE) bilayer. FE/DE thickness ratios are then systematically tuned at ease to achieve ideal capacitance matching. NC-FETs with optimized FE/DE thickness at a thickness limit demonstrate hysteresis-free operation with an SS of 28 mV dec-1 at ≈1.5 V, which competes with the best reports. This P(VDF-TrFE)-brush layer can be broadly adapted to NC-FETs, opening an exciting avenue for low-power devices.

12.
ACS Nano ; 17(4): 3666-3675, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36795495

RESUMO

Two-dimensional (2D)-layered material tantalum disulfide (2H-TaS2) is known to be a van der Waals conductor at room temperature. Here, 2D-layered TaS2 has been partially oxidized by utraviolet-ozone (UV-O3) annealing to form a 12-nm-thin TaOX on conducting TaS2, so that the TaOX/2H-TaS2 structure might be self-assembled. Utilizing the TaOX/2H-TaS2 structure as a platform, each device of a ß-Ga2O3 channel MOSFET and a TaOX memristor has been successfully fabricated. An insulator structure of Pt/TaOX/2H-TaS2 shows good a dielectric constant (k ∼ 21) and strength (∼3 MV/cm) of achieved TaOX, which is enough to support a ß-Ga2O3 transistor channel. Based on the quality of TaOX and low trap density of the TaOX/ß-Ga2O3 interface, which is achieved via another UV-O3 annealing, excellent device properties such as little hysteresis (<∼0.04 V), band-like transport, and a steep subthreshold swing of ∼85 mV/dec are achieved. With a Cu electrode on top of the TaOX/2H-TaS2 structure, the TaOX acts as a memristor operating around ∼2 V for nonvolatile bipolar and unipolar mode memories. The functionalities of the TaOX/2H-TaS2 platform become more distinguished finally when the Cu/TaOX/2H-TaS2 memristor and ß-Ga2O3 MOSFET are integrated to form a resistive memory switching circuit. The circuit nicely demonstrates the multilevel memory functions.

13.
Small ; 18(28): e2200882, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35719033

RESUMO

Two-dimensional (2D) devices and their van der Waals (vdW) heterostructures attract considerable attention owing to their potential for next-generation logic and memory applications. In addition, 2D devices are projected to have high integration capabilities, while maintaining nanoscale thickness. However, the fabrication of 2D devices and their circuits is challenging because of the high precision required to etch and pattern ultrathin 2D materials for integration. Here, the fabrication of a graphene via contact architecture to electrically connect graphene electrodes (or leads) embedded in vdW heterostructures is demonstrated. Graphene via contacts comprising of edge and fluorinated graphene (FG) electrodes are fabricated by successive fluorination and plasma etching processes. A one-step fabrication process that utilizes the graphene contacts is developed for a vertically integrated complementary inverter based on n- and p-type 2D field-effect transistors (FETs). This study provides a promising method to fabricate vertically integrated 2D devices, which are essential in 2D material-based devices and circuits.

14.
Adv Mater ; 34(18): e2108777, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35293650

RESUMO

2D multiferroics with combined ferroic orders have gained attention owing to their novel functionality and underlying science. Intrinsic ferroelastic-ferroelectric multiferroicity in single-crystalline van der Waals rhenium dichalcogenides, whose symmetries are broken by the Peierls distortion and layer-stacking order, is demonstrated. Ferroelastic switching of the domain orientation and accompanying anisotropic properties is achieved with 1% uniaxial strain using the polymer encapsulation method. Based on the electron localization function and bond dissociation energy of the Re-Re bonds, the change in bond configuration during the evolution of the domain wall and the preferred switching between the two specific orientation states are explained. Furthermore, the ferroelastic switching of ferroelectric polarization is confirmed using the photovoltaic effect. The study provides insights into the reversible bond-switching process and potential applications based on 2D multiferroicity.

15.
Small Methods ; 6(3): e2101073, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35037415

RESUMO

To dope 2D semiconductor channels, charge-transfer doping has generally been done by thermal deposition of inorganic or organic thin-film layers on top of the 2D channel in bottom-gate field-effect transistors (FETs). The doping effects are reproducible in most cases. However, such thermal deposition will damage the surface of 2D channels due to the kinetic energy of depositing atoms, causing hysteresis or certain degradation. Here, a more desirable charge-transfer doping process is suggested. A damage-free charge-transfer doping is conducted for 2D MoTe2 (or MoS2 ) channels using a polydimethylsiloxane stamp. MoO3 or LiF is initially deposited on the stamp as a doping medium. Hysteresis-minimized transfer characteristics are achieved from stamp-doped FETs, while other devices with direct thermal deposition-doped channels show large hysteresis. The stamping method seems to induce a van der Waals-like damage-free interface between the channel and doping media. The stamp-induced doping is also well applied for a MoTe2 -based complementary inverter because MoO3 - and LiF-doping by separate stamps effectively modifies two ambipolar MoTe2 channels to p- and n-type, respectively.

16.
ACS Nano ; 15(11): 17917-17925, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34677045

RESUMO

Polarization-sensitive photodetection has attracted considerable attention as an emerging technology for future optoelectronic applications such as three-dimensional (3D) imaging, quantum optics, and encryption. However, traditional photodetectors based on Si or III-V InGaAs semiconductors cannot directly detect polarized light without additional optical components. Herein, we demonstrate a self-powered linear-polarization-sensitive near-infrared (NIR) photodetector using a two-dimensional WSe2/ReSe2 van der Waals heterostructure. The WSe2/ReSe2 heterojunction photodiode with semivertical geometry exhibits excellent performance: an ideality factor of 1.67, a broad spectral photoresponse of 405-980 nm with a significant photovoltaic effect, outstanding linearity with a linear dynamic range wider than 100 dB, and rapid photoswitching behavior with a cutoff frequency up to 100 kHz. Strongly polarized excitonic transitions around the band edge in ReSe2 lead to significant 980 nm NIR linear-polarization-dependent photocurrent. This linear polarization sensitivity remains stable even after exposure to air for longer than five months. Furthermore, by leveraging the NIR (980 nm)-selective linear polarization detection of this photodiode under photovoltaic operation, we demonstrate digital incoherent holographic 3D imaging.

17.
Adv Mater ; 33(38): e2103079, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34338384

RESUMO

Highly crystalline 2D/3D-mixed p-transition metal dichalcogenide (TMD)/n-Ga2 O3 heterojunction devices are fabricated by mechanical exfoliation of each p- and n-type material. N-type ß-Ga2 O3 and p-type TMD separately play as a channel for junction field effect transistors (JFETs) with each type of carriers as well as materials for a heterojunction PN diode. The work thus mainly focuses on such ambipolar channel transistors with two different types of channel in a single device architecture. For more extended applications, the transparency of high energy band gap ß-Ga2 O3 (Eg  ≈ 4.8 eV) is taken advantage of, firstly to measure the electrical energy gap of p-TMDs receiving visible or near infrared (NIR) photons through the ß-Ga2 O3 . Next, the p-TMD/n-Ga2 O3 JFETs are put to high speed photo-sensing which is achieved from the p-TMD channel under reverse bias voltages on n-Ga2 O3 . The photo-switching cutoff frequency appears to be ≈16 and 29 kHz for visible red and NIR illuminations, respectively, on the basis of -3 dB photoelectric power loss. Such a high switching speed of the JFET is attributed to the fast transport of photo-carriers in TMD channels. The 2D/3D-mixed ambipolar channel JFETs and their photo-sensing applications are regarded novel, promising, and practically easy to achieve.

18.
Nano Lett ; 21(8): 3503-3510, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856222

RESUMO

Molybdenum disulfide (MoS2) has been regarded as one of the most important n-type two-dimensional (2D) transition metal dichalcogenide semiconductors for nanoscale electron devices. Relatively high contact resistance (RC) remains as an issue in the 2D-devices yet to be resolved. Reliable technique is very compelling to practically produce low RC values in device electronics, although scientific approaches have been made to obtain a record-low RC. To resolve this practical issue, we here use thermal-evaporated ultrathin LiF between channel and source/drain metal to fabricate 2D-like MoS2 field effect transistors (FETs) with minimum RC. Under 4-bar FET method, RC less than ∼600 Ω·µm is achieved from the LiF/Au contact MoS2 FET. Our normal 2-bar FET with LiF thus shows the same mobility as that of 4-bar FET that should have no RC in principle. On the basis of these results, ultrathin LiF is also applied for transparent conducting oxide contact, successfully enabling transparent MoS2 FETs.

19.
ACS Appl Mater Interfaces ; 13(17): 20349-20360, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33818057

RESUMO

In this study, the excellent hydrogen barrier properties of the atomic-layer-deposition-grown Al2O3 (ALD Al2O3) are first reported for improving the stability of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). Chemical species in Al2O3 were artificially modulated during the ALD process using different oxidants, such as H2O and O3 (H2O-Al2O3 and O3-Al2O3, respectively). When hydrogen was incorporated into the H2O-Al2O3-passivated TFT, a large negative shift in Vth (ca. -12 V) was observed. In contrast, when hydrogen was incorporated into the O3-Al2O3-passivated TFT, there was a negligible shift in Vth (ca. -0.66 V), which indicates that the O3-Al2O3 has a remarkable hydrogen barrier property. We presented a mechanism for trapping hydrogen in a O3-Al2O3 via various chemical and electrical analyses and revealed that hydrogen molecules were trapped by C-O bonds in the O3-Al2O3, preventing the inflow of hydrogen to the a-IGZO. Additionally, to minimize the deterioration of the pristine device that occurs after a barrier deposition, a bi-layered hydrogen barrier by stacking H2O- and O3-Al2O3 is adopted. Such a barrier can provide ultrastable performance without degradation. Therefore, we envisioned that the excellent hydrogen barrier suggested in this paper can provide the possibility of improving the stability of devices in various fields by effectively blocking hydrogen inflows.

20.
ACS Nano ; 14(11): 15646-15653, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33136370

RESUMO

Two-dimensional (2D) transition metal dichalcogenide (TMD) hetero PN junctions with a van der Waals (vdW) interface have received much attention, because PN diodes are basically important to control the vertical current across the junction. Interestingly, the same vdW PN junction structure can be utilized for junction field-effect transistors (JFETs) where in-plane current is controlled along the junction. However, 2D vdW JFETs seem rarely reported, despite their own advantages to achieve when good vdW junction is secured. Here, we present high-performance p-MoTe2 JFETs using almost perfect vdW organic Alq3/p-MoTe2 junctions and demonstrate organic NPB/n-MoS2 JFETs. The p- and n-channel JFETs stably show high mobilities of 60-80 and ∼800 cm2/V s, respectively, along with a high ON/OFF current ratio (>1 × 105) and minimal gate leakage at 5 V even after a few months. Such performances are attributed to a quality vdW junction at organic layer/TMD interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA